Irrational Numbers. the Existence of a Rational Number Whose Square is Two
DOI:
https://doi.org/10.47494/mesb.v33i.1697Keywords:
irrational numbers, periodic division, rational numbers, square, theorem, proof, etcAbstract
This article describes in detail examples and problems that prove the existence of irrational numbers and a rational number whose square is equal to two.
Downloads
References
A. A. A ’zamov, В. K. Xaydarov. M atem atika sayyorasi. , , 0 ‘qituvchi“ , Т., 1993.
T. A. Azlarov, M. A. Mirzaahmedov, D. 0. Otaqo‘ziyev, M. A. Sobirov, S. T. T o‘lagcinov. Matematikadan qoMlanma (maktab o ‘qituvchilari uchun q o ‘llanma). 2-qism. 0 ‘qituvchi, Т. 1990.
S. I. Afonina. M atem atika va go ‘zallik. , , 0 ‘qituvchi“ , Т., 1987.
Sh. A. Ayupov, В. B. Rixsiyev, O. Sh. Qo'chqomv. Matematika olimpiadalari masalalari. I, II qismlar, ,,F A N “ Т., 2004.
В. Г. Болтянский, В. А. Ефремович. Наглядная топология. Н аука, М. 1982.
С.Г.Гиндикин. Рассказы о ф изиках и математиках. Наука, М. 1985.
Published
How to Cite
Issue
Section
This work is licensed under a Creative Commons Attribution 4.0 International License.
The work simultaneously licensed under a Creative Commons Attribution 4.0 International License
You are free to:
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
-
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.