Irrational Numbers. the Existence of a Rational Number Whose Square is Two


    (*) Corresponding Author

DOI:

https://doi.org/10.47494/mesb.v33i.1697

Keywords:

irrational numbers, periodic division, rational numbers, square, theorem, proof, etc

Abstract

This article describes in detail examples and problems that prove the existence of irrational numbers and a rational number whose square is equal to two.

Downloads

Download data is not yet available.

References

A. A. A ’zamov, В. K. Xaydarov. M atem atika sayyorasi. , , 0 ‘qituvchi“ , Т., 1993.

T. A. Azlarov, M. A. Mirzaahmedov, D. 0. Otaqo‘ziyev, M. A. Sobirov, S. T. T o‘lagcinov. Matematikadan qoMlanma (maktab o ‘qituvchilari uchun q o ‘llanma). 2-qism. 0 ‘qituvchi, Т. 1990.

S. I. Afonina. M atem atika va go ‘zallik. , , 0 ‘qituvchi“ , Т., 1987.

Sh. A. Ayupov, В. B. Rixsiyev, O. Sh. Qo'chqomv. Matematika olimpiadalari masalalari. I, II qismlar, ,,F A N “ Т., 2004.

В. Г. Болтянский, В. А. Ефремович. Наглядная топология. Н аука, М. 1982.

С.Г.Гиндикин. Рассказы о ф изиках и математиках. Наука, М. 1985.

Published

2023-02-28

How to Cite

Irrational Numbers. the Existence of a Rational Number Whose Square is Two. (2023). Middle European Scientific Bulletin, 33, 112-114. https://doi.org/10.47494/mesb.v33i.1697