A System for Analyzing and Processing Data on the Quantitative and Qualitative Characteristics of University Staff Based on the Apparatus of Soft Computing


    (*) Corresponding Author

Keywords:

data mining, data processing, fuzzy inference, neural network, fuzzy rules, linguistic terms, identification

Abstract

Models and algorithms for optimizing the description, identification of non-stationary objects, analysis and synthesis of tasks of intelligent personnel management systems have been developed that have the properties inherent in neuro-fuzzy networks and provide a convenient interface for decision-making. Methods for forming fuzzy rule bases, modeling membership functions and linguistic terms, synthesizing components of neuro-fuzzy networks are proposed.

Downloads

Download data is not yet available.

References

Родзина, О. Н. (2020). Проблемно-ориентированные алгоритмы мягких вычислений.

Poleshchuk, O., & Komarov, E. (2011). Expert fuzzy information processing (Vol. 268). Springer.

Ganjidoost, H., Mousavi, S. J., & Soroush, A. (2016). Adaptive network-based fuzzy inference systems coupled with genetic algorithms for predicting soil permeability coefficient. Neural Processing Letters, 44(1), 53-79.

Freyman, V. I. (2018). Methods and algorithms of soft decoding for signals within information transmission channels between control systems elements. Radio electronics computer science control, (4), 226-235.

Zhuk, A., Orel, D., Nekrasova, E., & Krivolapova, O. (2019). The use of simulation models and game scenarios in the study of radio engineering systems by higher engineering students. In CEUR Workshop Proceedings (Vol. 2494, p. 154115).

Zhuk, A. P., Orel, D. V., Vanina, A., & Minkina, T. V. (2020). Information security threats of wireless" SMART" utility meteringsystems. In CEUR Workshop Proceedings (pp. 143-150).

Kalmykov, I. A., Pashintsev, V. P., Zhuk, A. P., Chistousov, N. K., & Olenev, A. A. (2019). Development of satellite authentication system for low earth orbit satellite communication system on the basis of polynomial residue number system. International Journal of Engineering and Advanced Technology, 8(5), 2557-2562.

Жуманов, И. И. (2019). Система обработки данных о количественных и качественных характеристиках кадров ВУЗа с применением аппарата мягких вычислений. Технические науки: проблемы и решения (pp. 25-29).

Jumanov, I., Djumanov, O., & Safarov, R. (2021). Improving the quality of identification and filtering of micro-object images based on neural networks. In E3S Web of Conferences (Vol. 304, p. 01007). EDP Sciences.

Ibragimovich, J. I., Isroilovich, D. O., & Maxmudovich, X. S. (2020, November). Effective recognition of pollen grains based on parametric adaptation of the image identification model. In 2020 International Conference on Information Science and Communications Technologies (ICISCT) (pp. 1-5). IEEE.

Холмонов, С. М. (2017). Оптимизация обработки данных на основе модифицированного обучения нейронной сети и сегментации случайных временных процессов. Проблемы информатики, (1 (34)), 52-61.

Djumanov O.I., Kholmonov S.M., Yuldoshev F.U. Control of the reliability of the forecast of random time series based on a neuro-fuzzy network // International Journal of Advanced Research in Science, Engineering and Technology, India, Vol. 8, Issue 2, February 2021, pp. 16771-16774

Ibragimovich, J. I., Isroilovich, D. O., & Abdullayevich, S. R. (2020, November). Optimization of identification of micro-objects based on the use of characteristics of images and properties of models. In 2020 International Conference on Information Science and Communications Technologies (ICISCT) (pp. 1-6). IEEE.

Published

2022-02-16

How to Cite

A System for Analyzing and Processing Data on the Quantitative and Qualitative Characteristics of University Staff Based on the Apparatus of Soft Computing. (2022). Middle European Scientific Bulletin, 21, 139-143. Retrieved from https://cejsr.academicjournal.io/index.php/journal/article/view/1074

Issue

Section

Education