A System for Analyzing and Processing Data on the Quantitative and Qualitative Characteristics of University Staff Based on the Apparatus of Soft Computing
DOI:
https://doi.org/10.47494/mesb.v21i.1074Keywords:
data mining, data processing, fuzzy inference, neural network, fuzzy rules, linguistic terms, identificationAbstract
Models and algorithms for optimizing the description, identification of non-stationary objects, analysis and synthesis of tasks of intelligent personnel management systems have been developed that have the properties inherent in neuro-fuzzy networks and provide a convenient interface for decision-making. Methods for forming fuzzy rule bases, modeling membership functions and linguistic terms, synthesizing components of neuro-fuzzy networks are proposed.
Downloads
References
Родзина, О. Н. (2020). Проблемно-ориентированные алгоритмы мягких вычислений.
Poleshchuk, O., & Komarov, E. (2011). Expert fuzzy information processing (Vol. 268). Springer.
Ganjidoost, H., Mousavi, S. J., & Soroush, A. (2016). Adaptive network-based fuzzy inference systems coupled with genetic algorithms for predicting soil permeability coefficient. Neural Processing Letters, 44(1), 53-79.
Freyman, V. I. (2018). Methods and algorithms of soft decoding for signals within information transmission channels between control systems elements. Radio electronics computer science control, (4), 226-235.
Zhuk, A., Orel, D., Nekrasova, E., & Krivolapova, O. (2019). The use of simulation models and game scenarios in the study of radio engineering systems by higher engineering students. In CEUR Workshop Proceedings (Vol. 2494, p. 154115).
Zhuk, A. P., Orel, D. V., Vanina, A., & Minkina, T. V. (2020). Information security threats of wireless" SMART" utility meteringsystems. In CEUR Workshop Proceedings (pp. 143-150).
Kalmykov, I. A., Pashintsev, V. P., Zhuk, A. P., Chistousov, N. K., & Olenev, A. A. (2019). Development of satellite authentication system for low earth orbit satellite communication system on the basis of polynomial residue number system. International Journal of Engineering and Advanced Technology, 8(5), 2557-2562.
Жуманов, И. И. (2019). Система обработки данных о количественных и качественных характеристиках кадров ВУЗа с применением аппарата мягких вычислений. Технические науки: проблемы и решения (pp. 25-29).
Jumanov, I., Djumanov, O., & Safarov, R. (2021). Improving the quality of identification and filtering of micro-object images based on neural networks. In E3S Web of Conferences (Vol. 304, p. 01007). EDP Sciences.
Ibragimovich, J. I., Isroilovich, D. O., & Maxmudovich, X. S. (2020, November). Effective recognition of pollen grains based on parametric adaptation of the image identification model. In 2020 International Conference on Information Science and Communications Technologies (ICISCT) (pp. 1-5). IEEE.
Холмонов, С. М. (2017). Оптимизация обработки данных на основе модифицированного обучения нейронной сети и сегментации случайных временных процессов. Проблемы информатики, (1 (34)), 52-61.
Djumanov O.I., Kholmonov S.M., Yuldoshev F.U. Control of the reliability of the forecast of random time series based on a neuro-fuzzy network // International Journal of Advanced Research in Science, Engineering and Technology, India, Vol. 8, Issue 2, February 2021, pp. 16771-16774
Ibragimovich, J. I., Isroilovich, D. O., & Abdullayevich, S. R. (2020, November). Optimization of identification of micro-objects based on the use of characteristics of images and properties of models. In 2020 International Conference on Information Science and Communications Technologies (ICISCT) (pp. 1-6). IEEE.
Published
How to Cite
Issue
Section
This work is licensed under a Creative Commons Attribution 4.0 International License.
The work simultaneously licensed under a Creative Commons Attribution 4.0 International License
You are free to:
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
-
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.