Rational Roots of a Polynomial With Integer Coefficients. Performing Actions on them
DOI:
https://doi.org/10.47494/mesb.v33i.1700Keywords:
theorem, proof, mathematical property, polynomial, rational roots, coefficientAbstract
This article describes in detail the rational roots of polynomials with all the coefficients and the operations on them.
Downloads
References
D.G‟.Raximov. Oliy matematika. “O‟AMBNT” nashriyoti. Toshkent 2003.
Данко П.Е. и др. Высшая математика в упражнениях и задачах. Часть I, II. Учебное пособие. М. «Высшая школа», 1998.
F.Rajabov, S.Masharipova, R.Madraximov. Oliy matematika. “Turon iqbol” nashriyoti. Toshkent 2007.
B.A.Shoimqulov, T.T.Tuychiyev, D.H.Djumaboyev. Matematik analizdan mustaqil ishlar. “O‟zbekiston faylasuflar milliy jamiyati” nashriyoti. Toshkent 2008.
D.G‟.Raximov. Oliy matematika. “O‟AMBNT” nashriyoti. Toshkent 2003.
Nasriddinov, G„. Iqtisodiy-matematik modellar va usullar: darslik/ G „. N asritdinov; 0 „zbekiston Respublikasi Oliy va o „rta maxsus ta‟lim vazirligi. — Т.: 0 „zbekiston faylasuflari milliy jamiyati nashriyoti, 2019.
Published
How to Cite
Issue
Section
This work is licensed under a Creative Commons Attribution 4.0 International License.
The work simultaneously licensed under a Creative Commons Attribution 4.0 International License
You are free to:
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
-
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.