Equations of Transversal Vibration of a Two-Layer Viscoelastic Plate of Constant Thickness


    (*) Corresponding Author

DOI:

https://doi.org/10.47494/mesb.v29i.1562

Keywords:

cross-section fluctuations, a two-layer plate, the fluctuation equations

Abstract

This article discusses the analysis of the general equations of the transverse oscillation of a piecewise-homogeneous viscoelastic plate obtained in the "Oscillations of two-layer plates of constant thickness" article [1].

In this paper, on the basis of a mathematical method, an approximate theory of oscillation of piecewise homogeneous plates is developed, based on considering the plate as a three-dimensional body, on the exact formulation of the three-dimensional mathematical boundary value problem of oscillation under external forces causing transverse oscillations.The theoretical results obtained for solving dynamic problems of transverse vibrations of piecewise homogeneous two-layer plates of constant thickness, taking into account the viscous properties of their material, make it possible to more accurately calculate the stress-strain state of the plates under non-stationary external loads.In the present work on the basis of a mathematical method, the approached theory of fluctuation of the two-layer plates, based on plate consideration as three dimensional body, on exact statement of a three dimensional mathematical regional problem of fluctuation is stood at the external efforts causing cross-section fluctuations.The received theoretical results for the decision of dynamic problems of cross-section fluctuation of piecewise homogeneous two-layer plates of a constant thickness taking into account viscous properties of their material allow to count more precisely the is intense-deformed status of plates at non-stationary external loadings.

Downloads

Download data is not yet available.

References

Джалилов, М. Л., Хаджиева, С. С., & Иброхимова, М. М. (2019). Общий анализ уравнения поперечного колебания двухслойной однородной вязкоупругой пластинки. International Journal of Student Research, (3), 111-117.

Филиппов И.Г., Егорычев О.А. Волновые процессы в линейных вязкоупругих средах. М.: Машиностроение, 1983. 272 с.

Achenbach J.D. An asymptotic method to analyze the vibrations of elastic layer // Trans. ASME,1969. Vol. E 34, Nо 1. P. 37–46.

Brunelle E.J. The elastics and dynamics of a transversely isotropic Timoshenko beam // J. Compos. Mater., 1970. Vol. 4. Р. 404–416.

Каюмов, У. А., & Хаджиева, С. С. (2020, December). НЕКОТОРЫЕ РЕКОМЕНДАЦИЙ ПО ПРИМЕНЕНИЮ ПОРОШКОВЫХ СПЛАВОВ ПРИ ВОССТАНОВЛЕНИИ ДЕТАЛЕЙ СЕЛЬСКОХОЗЯЙСТВЕННОЙ ТЕХНИКИ СПОСОБАМИ ПЛАЗМЕННОЙ НАПЛАВКИ И НАПЫЛЕНИЯ. In The 4th International scientific and practical conference “Science and education: problems, prospects and innovations”(December 29-31, 2020) CPN Publishing Group, Kyoto, Japan. 2020. 808 p. (p. 330).

Джалилов, М. Л., & Рахимов, Р. Х. (2021). Колебания бесконечной кусочно-однородной двухслойной пластинки под воздействием нормальной нагрузки. Computational nanotechnology, 8(4), 28-33.

Yusupova Ranakhon Kasimdjanovna. Analysis of IP Sustainability and Efficiency Coefficiency. Middle European Scientific Bulletin. 2022/04/23

Khadjiyieva Salima Sadiqovna, Ibragimjanov Bakrambek Hamidovich.Some Recommendations for the Application of Powder Alloys in the Restoration of Agricultural Machinery Parts by Plasma Surface and Spraying Methods. International journal on orange technology. 2022/06/4

Published

2022-10-24

How to Cite

Equations of Transversal Vibration of a Two-Layer Viscoelastic Plate of Constant Thickness. (2022). Middle European Scientific Bulletin, 29, 195-201. https://doi.org/10.47494/mesb.v29i.1562

Issue

Section

Technology