Problems and Goals of Recommender Systems


    (*) Corresponding Author

DOI:

https://doi.org/10.47494/mesb.v23i.1196

Keywords:

recommendation system, collaborative filtering, content-based recommendation systems, hybrid recommender systems

Abstract

Background. On the Internet, where the number of choices is overwhelming, there is need to filter, prioritize and efficiently deliver relevant information in order to alleviate the problem of information overload, which has created a potential problem to many Internet users. Recommender systems solve this problem by searching through large volume of dynamically generated information to provide users with personalized content and services. This paper explores the different characteristics and potentials of different prediction techniques in recommendation systems in order to serve as a compass for research and practice in the field of recommendation systems.

Method: In this article, we review the key advances in collaborative filtering recommender systems, focusing on the evolution from research concentrated purely on algorithms to research concentrated on the rich set of questions around the user experience with the recommender. We argue that evaluating the user experience of a recommender requires a broader set of measures than have been commonly used, and suggest additional measures that have proven effective.

Result: Based on our analysis of the state of the field, we identify the most important open research problems, and outline key challenges slowing the advance of the state of the art, and in some cases limiting the relevance of research to real-world applications.

Conclusion. Recommender systems are an advanced form of software applications, more specifically decision-support systems, that efficiently assist the users in finding items of their interest. 

Downloads

Download data is not yet available.

References

F. Abel, Q. Gao, G.-J. Houben, and K. Tao. Analyzing user modeling on twitter for personalized news recommendations. In Proc. 19th International Conference on User Modeling, Adaption, and Personalization, UMAP’11, pages 1–12, Berlin, Heidelberg, 2011. Springer-Verlag. ISBN 978-3-642-22361-7. URL http://dl.acm.org/citation.cfm?id=2021855.2021857.

Lu, J.; Wu, D.; Mao, M.; aj.: Recommender System Application Development s: A Survey 2019

Sarwar, B.; Karypis, G.; Konstan, J.; aj.: Item - based collaborative filtering recommendation algorithms. 2018

Resnick, P.; Iacovou, N.; Suchak, M.; aj.: GroupLens: an open architecture for collaborative filtering of netnews. 2018

Shambour, Q.; Lu, J.: hybrid trust - enhanced collaborative filtering recommendation approach for personalized government - to - business e - services, International Journal of Intelligent Systems. 2017

Madadipouya, K.; Chelliah, S.: A Literature Review on Recommender Systems Algorithms, Techniques and Evaluations. BRAIN: Broad Research in Artificial Intelligence and Neuroscience, ročník 8, č. 2, July 2017.

P., L.; de Gemmis M.; G., S.: Content-based Recommender Systems: State of the Art and Trends. In: Ricci F., Rokach L., Shapira B., Kantor P. (eds) Recommender Systems Handbook. Springer, Boston, MA, 2011, ISBN 978-0-387-85819-7.

Lisa Wenige, Johannes Ruhland, Retrieval by recommendation: using LOD technologies to improve digital library search, © Springer Verlag GmbH Germany 2017

Mingdan Si, Qingshan Li, Shilling attacks against collaborative recommender systems: a review, Artificial Intelligence Review (2020) 53:291–319

Hui Li, Yan Gu, Saroj Koul, A Review of Digital Library Book Recommendation Models, 2015

Joseph A. Konstan, John Riedl, Recommender systems: from algorithms to user experience, © Springer Science+Business Media B.V. 2012

Emmanouil Vozalis, Konstantinos G. Margaritis, Analysis of Recommended Systems Algorithms, 2014

Y. Koren, R. Bell, and C. Volinsky. Matrix factorization techniques for recommender systems. Computer, 42(8):30–37, Aug. 2009.

Q. Lu, T. Chen, W. Zhang, D. Yang, and Y. Yu. Serendipitous personalized ranking for top-n recommendation. In Proc. The 2012 IEEE/WIC/ACM International Joint Conferences on Web Intelligence and Intelligent Agent Technology - Volume 01, WI-IAT ’12, pages 258–265, Washington, DC, USA, 2012. IEEE Computer Society.Rustamov A., Bekkamov F., Recommender systems: an overview, Scientific reports of Bukhara state university, 2021/3(85).

Буранова, М. А. (2020). ИННОВАЦИИ-ЗАЛОГ РАЗВИТИЯ И КОНКУРЕНТОСПОСОБНОСТИ ПРОМЫШЛЕННОСТИ СТРАНЫ. Интернаука, (13-2), 9-11.

Хашимова, Н. А., & Буранова, М. А. (2020). РАЗВИТИЕ ИНТЕЛЛЕКТУАЛЬНОГО ПОТЕНЦИАЛА ЗАЛОГ УСПЕШНОЙ ПОЛИТИКИ РУЗ. Интернаука, (13-2), 28-29.

Буранова, М. А., & Сайфутдинова, Н. Ф. (2020). РАЗВИТИЕ ПРОМЫШЛЕННОСТИ-ОСНОВА КОНКУРЕНТОСПОСОБНОСТИ СТРАНЫ. Интернаука, (13-2), 12-14.

Буранова, М. А. (2019). Перспективы развития электроэнергетической отрасли в условиях модернизации экономики Узбекистана. Российский внешнеэкономический вестник, (7), 60-63.

Буранова, М. А. (2019). Модернизация–ключ к развитию энергетики. Экономика и финансы (Узбекистан), (5).

Published

2022-04-19

How to Cite

Problems and Goals of Recommender Systems. (2022). Middle European Scientific Bulletin, 23, 95-104. https://doi.org/10.47494/mesb.v23i.1196

Issue

Section

Technology