86

One-Way Inversibility of Functional Operators with a Shift in the Spaces $L_P(\Gamma)$

Rasul Mardiev

Associate Professor, Faculty of Mathematics, Samarkand State University.

ABSTRACT

 Γ_{3}

Criteria are obtained for one-sided invertibility of functional operators with forward shift in Lebesgue spaces when an arbitrary non-empty set of periodic points has a shift.

KEYWORDS: shift, one-sided shift, reversibility, one-way reversibility, periodic points

Let $-\Gamma$ be a simple closed smooth oriented curve of the complex plane, $\alpha(t)$ – be a diffeomorphism (shift) of the contour Γ onto itself, preserving the orientation (line) and having a non-empty set Λ of periodic points of multiplicity m.

In this paper, in the spaces $L_p(\Gamma)$, $1 \le p < \infty$, we study a functional operator with a shift

$$A = a(t)I - b(t)W$$

where $a(t), b(t) \in C(\Gamma), I$ – single operator, W – shift operator: $(W_{\varphi}(t) = \varphi[\alpha(t)], t \in \Gamma$.

To date, within the framework of several different approaches, results have been obtained on the determination of the criterion of reversibility and one-sided reversibility of the operator A (see. [1 - 7])under various assumptions regarding the carrier contour and shear.

In [8], obtain a criterion for the one-sided invertibility of an operator A with a shift with two break points (p. 214) satisfying some conditions. In [9], the operator A was studied in the case of a code, the shift is a diffeomorphism and has a finite number of periodic points.

In this paper, we obtain criteria for the one-sided invertibility of the operator A in the space $L_p(\Gamma)$, $1 in the case of a code, the shift <math>\alpha$ has an arbitrary non-empty set of periodic points.

As is known (see, for example, [10]. P. 24-29), all periodic shift points α have the same multiplicity (period) m.

By $\Phi = Supp[\tau - \alpha_m(\tau)]$ we denote the closure of the set of all points of Γ at which $\alpha_m(\tau) \neq \tau$. For $u(t), a(t), b(t) \in C(\Gamma)$, we introduce the notation:

$$u_{\pm}(t) = \lim_{n \to \pm \infty} \prod_{i=0}^{m-1} u[\alpha_{n+i}(t)], \ h_{\pm}(t) = |a_{\pm}(t)| - |\alpha'_{\pm}(t)|^{-\frac{1}{p}} |b_{\pm}(t)|,$$

$$\Gamma_{1} = \Gamma \backslash \Phi, \ \Gamma_{2} = \{t \in \Phi: h_{\pm}(t) > 0\}$$

$$= \{t \in \Phi: h_{\pm}(t) < 0\}, \ \Gamma_{4} = \{t \in \Phi: h_{+}(t) < 0 < h_{-}(t),$$

$$\Gamma_{5} = \{t \in \Phi: h_{+}(t) > 0 > h_{-}(t)\}$$

$$\nu_{A}(t) = \begin{cases} \prod_{i=0}^{m} a(\alpha_{i}(t)) - \prod_{i=0}^{m-1} b(\alpha_{i}(t)), t \in \Gamma_{1} \\ \prod_{i=0}^{m-1} a(\alpha_{i}(t)), t \in \Gamma_{2} \\ \prod_{i=0}^{m-1} b(\alpha_{i}(t)), t \in \Gamma_{3} \\ 0, t \in \Gamma \setminus \bigcup_{i=1}^{3} \Gamma_{i} \end{cases}$$

It is easy to see that at periodic points t the equalities hold

$$h_{\pm}(t) = h_m(t) \stackrel{\text{def}}{=} |a_m(t)| - |\alpha'_m(t)|^{-\frac{1}{p}} \cdot |b_m(t)|$$

In the general case, Γ_1 by definition are an open set of points of the contour Γ at which $\alpha_m(t) = t$.

As is known, such a set Γ_1 can be represented as the sum of an at most countable set of open arcs $\hat{\gamma}$ on which the restriction of the shift $\alpha_m(t)$ is Carleman. Then Γ_1 can be represented in the form of unions of an at most countable collection of the set

$$\widehat{\Gamma}_i = \sum_{k=0}^{m-1} \alpha_k(\widehat{\gamma}_i)$$

The set $\mathcal{T} = \Phi \setminus \Lambda$ is an open set representable as a sum of at most countable set of open arcs $\tilde{\gamma}$. There are no periodic points inside the arcs $\tilde{\gamma}$, and their ends τ_{-} and τ_{+} are periodic points of the translation α . Then \mathcal{T} is also represented as a union of an at most countable collection of sets

$$\widetilde{\Gamma}_i = \sum_{k=0}^{m-1} \alpha_k(\widetilde{\gamma}_i).$$

If α has a finite number of periodic points, then Theorem -1 in [9] can be reformulated as follows: *Theorem -1*. The operator A is invertible from the right (left) if and only if the conditions

$$v_{\rm A}(t) \neq 0, \quad \forall t \in \Gamma \setminus \Gamma_4 \; (\forall t \in \Gamma \setminus \Gamma_5)$$

and the set $\Gamma_4(\Gamma_5)$ satisfies the conditions

 $\forall t \in \Gamma, \exists k_0 \in \mathbb{Z}, \ b(\alpha_k(t)) \neq 0 \ at \ k \geq k_0, \ a(\alpha_k(t)) \neq 0 \ at \ k < 0,$

(respectively

$$\forall t \in \Gamma_5, \exists k_0 \in \mathbb{Z} , b(\alpha_k(t)) \neq 0 \text{ at } k < k_0, \qquad a(\alpha_k(t)) \neq 0 \text{ at } k > k_0)$$

from this theorem, using the methods of [9], one can prove the following assertion.

Lemma 1. Let α have a finite number of arcs of type $\hat{\gamma}$ and a finite number of periodic points belonging to the set $\Gamma \setminus \Gamma_1$. In this case, the operator A is right (left) invertible if and only if the conditions of Theorem 1 are satisfied.

Now let $\alpha(t)$ have a finite or countable number of arcs of type $\hat{\gamma}$ and $\hat{\gamma}$, N'_0 – is the derived set for $N_0 = \Phi \cap \Lambda$.

Lemma 2. If A is right (left) invertible in the space $L_p(\Gamma)$, then the conditions

 $h_m(\tau) \neq 0, \ \forall \tau \in N_o$ (1)

We carry out the proof for the case of right invertibility of the operator A (left invertibility is considered similarly).

Let $\tau \in N_0 \setminus N'_0$. Then τ is the endpoint of the arc $\tilde{\gamma}$ that is invariant with respect to the translation α_m . Restricting *A* to the-invariant space

$$L_p(\bigcup_{k=0}^{m-1}\alpha_k(\tilde{\gamma}),$$

we obtain that A is invertible in this space from the right, but then, according to Theorem -1, $h_m(\tau) \neq 0$.

Suppose now that $\exists \tau_0 \in N'_0$, $h_m(\tau_0) = 0$. Then

$$h_m(\alpha_i(\tau_0)) = 0, \qquad i = 1, 2, ..., m - 1.$$
 (2)

For arbitrary $\varepsilon > 0$, there exist neighborhoods δ_i of points $\alpha_i(\tau_0)$, $i = \overline{0, m - 1}$ such that the sum of the length of all intervals δ_i does not exceed ε . Since $\tau_0 \in N'_0$ is a point of condensation of arcs of type $\tilde{\gamma}$, then inside the arcs δ_0 one can choose two periodic points τ'_0, τ''_0 of the shift $\alpha(t)$ such that inside the arcs (τ'_0, τ''_0) there were no other periodic points of shift α and the point τ'_0 preceded the point τ''_0 in the direction of the contour Γ .

For definiteness, suppose that

$$\lim_{n\to+\infty}\alpha_{mn}(t)=\tau_0''$$

for some point $t \in (\tau'_0, \tau''_0)$. Then the set

$$\theta = \sum_{i=0}^{m-1} (\alpha_i(\tau_0') \ \alpha_i(\tau_0''))$$

belongs to the set

$$H = \bigcup_{i=0}^{m-1} \delta_i$$

It is known ([10]. Pp. 23-28) that

$$\lim_{n\to\pm\infty}\alpha_{mn}(x)$$

exists for all $x \in (\alpha_i(\tau_0), \alpha_i(\tau_0))$, does not depend on the choice of points x and tends to $(\alpha_i(\tau_0))$ as $n \to -\infty$ and in $\alpha_i(\tau_0)$ as $n \to +\infty$, i = 0, 1, 2, ..., m - 1.

Since the operator A is invertible in $L_p(\Gamma)$ and the set θ is invariant with respect to α , it is also invertible on the right in $L_p(\theta)$, which are restrictions of the space $L_p(\Gamma)$ to the set θ . Therefore, by virtue of (2) and the stability of the one-sided invertibility property of operators, choosing ε small enough, we can perturb the coefficients of the operator A so that the condition

$$h_m(\tau_0') < 0 < h_m(\tau_0'')$$
 (3)

and the perturbed operator A' remains also invertible on the right in the space $L_p(\theta)$.

Since A' is right invertible in the space $L_p(\theta)$, for this the operators must be satisfied in the space $L_p(\theta)$ of the conditions of Theorem 1 in [9]. But conditions (3) contradict the conditions of Theorem

ISSN 2694-9970

1 in [9]. Lemma is proven.

Theorem -2. The operator A is invertible from the right (left) to $L_p(\Gamma)$, $1 , if and only if <math>v_A(t) \neq 0, \forall t \in \Gamma \setminus \Gamma_4$ ($\forall t \in \Gamma \setminus \Gamma_5$) (4)

and on the set $\Gamma_4(\Gamma_5)$ the condition

$$\forall t \in \Gamma_4, \exists k_0 \in \mathbb{Z}, \ b(\alpha_k(t)) = 0 \ npu \ k \ge k_0, \ a(\alpha_k(t)) \neq 0 \ npu \ k > k_0 \tag{5}$$

(respectively

$$\forall t \in \Gamma_5, \exists k_0 \in \mathbb{Z}, b\left(\alpha_k(t)\right) \neq 0 \text{ npu } k < k_0, a\left(\alpha_k(t)\right) \neq 0 \text{ npu } k > k_0 \tag{6}$$

We carry out the proof for the case of right invertibility of the operator (the case of left invertibility is considered similarly).

Need. If A is right invertible, then, according to Lemma 1, inequality (1) holds.

And then, by virtue of the definition of the sets Γ_i , $i = \overline{1, 5}$, the contour Γ satisfies the equalities

$$\Gamma = \bigcup_{i=1}^{5} \Gamma_i$$

The set Γ_1 is represented as a union of at most countable collection of sets

$$\widehat{\Gamma}_j = \sum_{k=0}^{m-1} \alpha_k (\widehat{\gamma}_j)$$

on which the restriction of the shift $\alpha(t)$ is Carleman. Similarly, the set $T = \Phi \setminus \Lambda$ is also represented as a union of an at most countable collection of α – invariant sets

$$\widetilde{\Gamma}_{j} = \sum_{k=0}^{m-1} \alpha_{k} \left(\widetilde{\gamma}_{j} \right)$$

on which the restriction of the shift α is non-Carleman. Then

$$\Gamma = \bigcup_{i=1}^{5} \Gamma_{i} = (\bigcup_{j} \widetilde{\Gamma}_{j}) \cup (\bigcup_{j} \widehat{\Gamma}_{j}) \cup N_{0}$$

If the operator A is right invertible in the space $L_p(\Gamma)$, then it is also right invertible in the spaces $L_p(\widetilde{\Gamma}_j), L_p(\widehat{\Gamma}_j)$ and $L_p(N_0)$. Hence, according to Theorem -1, conditions (4) - (5) are satisfied for the sets $\widetilde{\Gamma}_j$ with Γ replaced by $\overline{\widetilde{\Gamma}_j}$ and Γ_4 by $\Gamma_4 \cap \widetilde{\Gamma}_j$. On the sets $\widehat{\Gamma}_i$ and $N_0 \subset \Gamma_2 \cup \Gamma_3$ (here we take into account that $h_{\pm}(\tau) = h_m(\tau)$ and $h_m(\tau) \neq 0$ according to (1)) the shift α is Carleman and again conditions (4) - (5) The necessity is proved.

Adequacy. Let the conditions of the theorem be satisfied. Then, at the ends τ of arcs from $\widehat{\Gamma}_j \quad \alpha'_m(\tau) = 1$, and hence $|a_m(\tau)| \neq |b_m(\tau)|$. Taking this into account, under the conditions of the theorem, the operator A is invertible on the right in each space $L_p(\widetilde{\Gamma}_j)$ and $L_p(\widehat{\Gamma}_j)$.

Take an arbitrary point z of the set N_0 . In it, the values $h_m(z)$ do not vanish. Indeed, since $h_{\pm}(z) = h_m(z)$, then either $z \in \Gamma_2 \cup \Gamma_3$ or

$$z\in \Gamma\backslash\bigcup_{i=1}^5\Gamma_i$$

Middle European Scientific Bulletin, VOLUME 19 Dec 2021

ISSN 2694-9970

In the latter case, $v_{\alpha}(a, b) = 0$, which contradicts the hypothesis of the theorem. Therefore, $z \in \Gamma_2 \cup$ Γ_3 and therefore $h_m(z) \neq 0$.

Further, by virtue of the continuity of the coefficients of the operator A at all points belonging to a sufficiently small neighborhood U_z of the point $z \in N'_0 \subset N_0$, $h_+(t)$ and $h_-(t)$ have the same sign, i.e. or

$$h_{\pm}(t)>0, \; \forall t\in U_z \quad (7)$$

or

$$h_{\pm}(t) < 0, \ \forall t \in U_z \quad (8)$$

Due to the compactness of the set N_0^{\prime} and according to (7), (8), from any infinite covering of the set N'_0 , one can choose a finite subcover U_i , $i = \overline{1, \mu}$ such that at all periodic points $\tau \in U_i$ either

$$|a_m(\tau)| > |b_m(\tau)| \left| \alpha'_m(\tau) \right|^{-\frac{1}{p}}$$
or
$$(9)$$

$$|a_m(\tau)| < |b_m(\tau)| \cdot \left|\alpha'_m(\tau)\right|^{-\frac{1}{p}} \tag{10}$$

Moreover, at all periodic points $\tau \in \Gamma_1 \cap U_i$, due to the equality $\alpha'_m(\tau) = 1$, either

$$|a_m(\tau)| > |b_m(\tau)| \tag{11}$$

or

 $|a_m(\tau)| < |b_m(\tau)|$ (12)

Without loss of generality, we can assume that the boundary of the sets U_i consists of periodic shift points α . Then the sets

$$\beta_{i} = \bigcup_{k=0}^{m-1} \alpha_{k}(U_{i}), i = \overline{1, k_{0}}, k_{0} = \frac{\mu}{m}$$
(13)

are invariant with respect to the shift α . It is easy to see that (7) or (8) also hold for any point t belonging to the set $\beta_i \cap \Gamma$. Suppose that (7) holds (if (8) holds, then the reasoning is similar). Then

$$\prod_{j=0}^{m-1} a\left(\alpha_j(t)\right) \neq 0, \ \forall t \in \beta_i, \qquad i = \overline{1, k_0} \ \left(k_0 = \frac{\mu}{m}\right)$$

and since the coefficients of the operator A are continuous, for any $\varepsilon > 0$ from the covering of the set N'_0 one can choose a finite covering U_i , such that

$$\left|\frac{b_m(t)}{a_m(t)}\right| \le \left|\frac{b_m(\tau)}{a_m(\tau)}\right| + \varepsilon, \qquad \left|\alpha'_m(t)\right|^{-\frac{1}{p}} \le (1+\varepsilon)^{-\frac{1}{p}}, \forall t \in U_i \qquad (14)$$

where τ is one of the ends of one of the arcs U_i .

Let us estimate the spectral radius $\rho_i(T_g)$ of the operator $T_g = gW$, where

$$g(t) = \frac{b(t)}{a(t)}$$
 in the space $L_p(\beta_i)$.

Taking into account (14), for n = km,

$$\left\| \left(T_g^n \varphi \right)(t) \right\|_{L_p(\beta_i)} \le \left(|g_m(\tau)| + \varepsilon \right)^k \cdot \left(1 + \varepsilon \right)^{-\frac{1}{p}} \left\| \varphi \right\|_{L_p(\beta_i)}$$

Then, in the space $L_p(\beta_i)$,

91

$$\left\|T_g^n\right\| \le \left(|g_m(\tau)| + \varepsilon\right)^{\frac{n}{m}} \left(1 + \varepsilon\right)^{-\frac{1}{p}} \tag{15}$$

 U_3 (15) it follows that $\rho_i(T_g) \leq (|g_m(\tau)| + \varepsilon)^{\frac{1}{m}}$ in the space $L_p(\beta_i)$. Taking into account (7) and choosing ε small enough, we achieve the inequality $\rho_i(T_g) < 1$. Then, as is easy to see, the spectral radius $\rho(T_g)$ of the operators T_g in the space $L_p(\theta)$, where

$$\theta = \bigcup_{i=1}^{\kappa_0} \beta_i$$

also less than one. Then, according to the well-known theorem on the inverse operator, the operator A is invertible in the space $L_p(\theta)$.

The space $L_p(\Gamma)$ is decomposed by the direct sum of the subspaces $L_p(\theta)$ and $L_p(\Gamma \setminus \theta)$, that are invariant with respect to α . In the space $L_p(\Gamma \setminus \theta)$, the operator A has a finite number of periodic points and a finite number of arcs of type $\hat{\gamma}$. Therefore, according to Lemma 1, under the condition of the theorem, the operator A is invertible on the right in $L_p(\Gamma \setminus \theta)$. Therefore, A is invertible on the right in $L_p(\Gamma \setminus \theta)$. The theorem is completely proved.

REFERENCES

- 1. A. Yu. Karlovich, Fredholmness and index of simplest weighted singular integral operators with two slowly oscillating shifts. Banach J. Math. Anal. 9 (2015) 24–42.
- 2. Karlovich, Alexei Yu., Yuri I. Karlovich, and Amarino B. Lebre. "Criteria for n(d)-normality of weighted singular integral operators with shifts and slowly oscillating data." *Proceedings of the London Mathematical Society.* 116.4 (2018): 997-1027.
- 3. M.A. Bastos, C. Fernandes, and Yu.I. Karlovich. A C□-algebra of singular integral operators with shifts admitting distinct fixed points. J. Math. Anal. Appl., 413(1):502–524, 2014.
- 4. Е. В. Пантелеева Условие правосторонней обратимости операторов взвешенного сдвига в пространствах вектор-функций // Вестник БГУ. СЕР. 1. 2014. № 1, С 92-95
- 5. А. Б. Антоневич, А. А. Ахматова, Ю. Маковска, "Отображения с разделимой динамикой и спектральные свойства порожденных ими операторов", *Матем. сб.*, **206**:3 (2015), 3–34
- 6. A. B. Antonevich, Yu. Yakubovska, Weighted translation operators generated by mappings with saddle points: a model class Journal of Mathematical Sciences 164, (2010): 497–517.
- 7. Ю. И. Карлович, Р. Мардиев, "Об односторонней обратимости функциональных операторов и n(d)-нормальности сингулярных интегральных операторов со сдвигом в пространствах Гёльдера", Дифференц. уравнения, 24:3 (1988), 488–499
- 8. Мардиев Р. Сингулярные интегральные операторы со сдвигом не имеющих периодических точек. Modern problems of dynamical systems and their applications. May 1-3, 2017.-213-214p.
- 9. Мардиев Р. Критерий полунетеровости одного класса сингулярных интегральных операторов с некарлемановским сдвигом // Докл. АН УзССР. 1985. Т. 2. № 2. С. 5–7.
- 10. Литвинчук Г.С. Краевые задачи и сингулярные интегральные уравнения со сдвигом. М.: Наука, 1977.–448с.