Optimal Quadrature Formulas with Derivatives in the Space $W_2^{(6,5)}$

Rasulov Rashidjon, Abdusalom Sattorov Ferghana Polytechnic Institute, Uzbekistan

ABSTRACT

In the paper we consider an extension problem of the Euler-Maclaurin quadrature formula in the space by constructing an optimal quadrature formula.

KEYWORDS: Optimal quadrature formula, Hilbert space, the error functional, Sobolev method, discrete argument function.

1. Statement of the problem.

Consider the following quadrature formula

$$\int_{0}^{1} \varphi(x) dx \cong \sum_{\beta=0}^{N} \left(C_0[\beta] \varphi(h\beta) + C_1[\beta] \varphi'(h\beta) + C_2[\beta] \varphi''(h\beta) + C_5[\beta] \varphi^{(5)}(h\beta) \right)$$
(1)

where

$$C_0[0] = \frac{h}{2}, \quad C_0[\beta] = h, \quad C_0[N] = \frac{h}{2}, \quad (\beta = 1, 2, ..., N - 1)$$
 (2)

$$C_1[0] = \frac{h^2}{12}, \quad C_1[\beta] = 0, \quad C_1[N] = -\frac{h^2}{12}, \ (\beta = 1, 2, ..., N - 1),$$
 (3)

and

$$C_2[0] = -\frac{h^4}{720}, \quad C_2[\beta] = 0, \quad C_2[N] = \frac{h^4}{720}, \quad (\beta = 1, 2, ..., N-1)$$
 (4)

 $C_5[\beta]$ are unknown coefficients of the quadrature formula (1), $h = \frac{1}{N}$, N is a natural number.

We suppose that integrands φ belong to $W_2^{(6,5)}$, where by $W_2^{(6,5)}$ is the class of all functions φ defined on [0; 1] which posses an absolutely continuous sixth derivative and whose fifth derivative is in $L_2(0,1)$ (see [4]). The class $W_2^{(6,5)}$ under the pseudo-inner product

$$\langle \varphi, \psi \rangle_{W_2^{(6,5)}} = \int_0^1 (\varphi^{(6)}(x) + \varphi^{(5)}(x))(\psi^{(6)}(x) + \psi^{(5)}(x))dx$$

is a Hilbert if we identify functions that differ by a linear combination of 1, x, x^2 , x^3 , x^4 and e^{-x}

(see, for example, [1, 4]). The space $W_2^{(6,5)}$ is equipped by the corresponding norm

$$\mathbf{P}\boldsymbol{\varphi}_{W_{2}^{(6,5)}} = \left[\int_{0}^{1} (\boldsymbol{\varphi}^{(6)}(x) + \boldsymbol{\varphi}^{(5)}(x))^{2} dx\right]^{1/2}.$$
 (5)

The error of the formula (1) is the difference

$$(\ell, \varphi) = \int_{0}^{1} \varphi(x) dx - \sum_{\beta=0}^{N} \left(C_0[\beta] \varphi(h\beta) + C_1[\beta] \varphi'(h\beta) + C_2[\beta] \varphi'''(h\beta) + C_5[\beta] \varphi^{(4)}(h\beta) \right) (6)$$

and it defines a functional

234

$$\ell(x) = \mathcal{E}_{[0,1]}(x) - \sum_{\beta=0}^{N} C_0[\beta] \delta(x - h\beta) - C_1[\beta] \delta'(x - h\beta) - C_2[\beta] \delta'''(x - h\beta) - C_5[\beta] \delta^{(4)}(x - h\beta)$$
(7)

which is called *the error functional* of the quadrature formula (1), where $\mathcal{E}_{[0,1]}(x)$ is the indicator of the interval [0; 1], δ is Dirac's delta-function. The value of the error functional ℓ at a function φ is calculated as $(\ell, \varphi) = \int_{-\infty}^{\infty} \ell(x)\varphi(x)dx$ (see [7]) and ℓ is a linear functional in $W_2^{(6,5)*}$ space, where $W_2^{(6,5)*}$ is the conjugate space to the space $W_2^{(6,5)}$.

Since the error functional (7) is defined on the space $W_2^{(6,5)}$ it is necessary to impose the following conditions for the error functional ℓ

$$(\ell,1) := 1 - \sum_{\beta=0}^{N} C_0[\beta] = 0, \tag{8}$$

$$(\ell, x) := \frac{1}{2} - \sum_{\beta=0}^{N} \left(C_0[\beta](h\beta) + C_1[\beta] \right) = 0, \tag{9}$$

$$(\ell, x^2) := \frac{1}{3} - \sum_{\beta=0}^{N} \left(C_0[\beta](h\beta)^2 + 2C_1[\beta](h\beta) \right) = 0,$$
(10)

$$(\ell, x^3) := \frac{1}{4} - \sum_{\beta=0}^{N} \left(C_0[\beta](h\beta)^3 + 3C_1[\beta](h\beta)^2 + 6C_2[\beta] \right) = 0, \tag{11}$$

$$(\ell, x^4) := \frac{1}{5} - \sum_{\beta=0}^{N} \left(C_0[\beta](h\beta)^4 + 4C_1[\beta](h\beta)^3 + 24C_2[\beta](h\beta) \right) = 0,$$
(12)

$$(\ell, e^{-x}) := \int_{0}^{1} e^{-x} dx - \sum_{\beta=0}^{N} \left(C_0[\beta] e^{-h\beta} - C_1[\beta] e^{-h\beta} - C_2[\beta] e^{-h\beta} - C_5[\beta] e^{-h\beta} \right) = 0.$$
(13)

ISSN 2694-9970

The equations (8)-(13) show that the quadrature formula (1) is exact to the functions $1, x, x^2, x^3$ and

 e^{-x} . One can see that the coefficients $C_0[\beta]$, $C_1[\beta]$, $C_2[\beta]$ and $C_5[\beta]$ defined by equalities (2), (3) and (4) satisfy equations (8), (9), (10), (11) and (12). Therefore for unknown coefficients $C_5[\beta], \beta = 0, 1, ..., N$, we have only equation (13).

The absolute value of the error (6) is estimated from above by the norm

$$\|\ell\|_{W_{2}^{(6,5)^{*}}} = \sup_{\varphi, P \not = P_{W_{2}^{(6,5)}} \neq 0} \frac{|(\ell, \varphi)|}{P \varphi P_{W_{2}^{(6,5)}}}$$

of the error functional ℓ as follows

$$|(\ell,\varphi)| \leq \mathbf{P}\varphi \mathbf{P}_{W_2^{(6,5)}} \cdot \mathbf{P}\ell \mathbf{P}_{W_2^{(6,5)^*}}.$$

Furthermore, one can see from (6) that the norm of the error functional (7) depends on coefficients $C_5[\beta]$.

Thus, in order to construct *an optimal quadrature formula* of the form (1) in the sense of Sard we have to solve the following problem.

Problem 1. Find the minimum for the norm of the error functional (7) by coefficients $C_5[\beta]$, i.e.

$$\|\ell\|_{W_2^{(6,5)^*}} = \inf_{C_4[\beta]} \|\ell\|_{W_2^{(5,4)^*}}.$$
(14)

The coefficients satisfying equality (14) are called *optimal coefficients* and are denoted as $C_5[\beta]$, $\beta = 0, 1, ..., N$.

For solving Problem 1, first, we find an expression for the norm of the error functional (7) and next, we calculate it's minimum by coefficients $C_5[\beta]$, $\beta = 0, 1, ..., N$.

The rest of the paper is organized as follows:

2. Coefficients of the optimal quadrature formula.

2.1.The norm of the error functional ℓ .

To get a representation of the norm of the error functional (7) in the space $W_2^{(6,5)}(0,1)$ we use *the extremal function* for this functional (7) which satisfies the following equality (see [7, 8]):

$$\left(\ell, \psi_{\ell}\right) = \mathbf{P}\ell \mathbf{P}_{W_{2}^{(5,4)*}} \cdot \mathbf{P}\psi_{\ell} \mathbf{P}_{W_{2}^{(5,4)}}.$$

From Theorem 2.1 of the work [4] for the extremal function ψ_{ℓ} of the error functional ℓ in the space $W_2^{(6,5)}$ we get the following formula

$$\psi_{\ell}(x) = \ell(x) * G_6(x) + P_4(x) + de^{-x}, \qquad (15)$$

where

ISSN 2694-9970

$$G_6(x) = \frac{\text{sgn}x}{2} \left(\frac{e^x - e^{-x}}{2} - \frac{x^9}{9!} - \frac{x^7}{7!} - \frac{x^5}{5!} - \frac{x^3}{3!} - x \right), \tag{16}$$

 $P_4(x) = p_4 x^4 + p_3 x^3 + p_2 x^2 + p_1 x + p_0 \text{ is a polynomial of degree three and } d \text{ is a real number.}$ Furthermore, from the results of [4] we have $P\ell P_{W_2^{(6,5)*}} = P\psi_\ell P_{W_2^{(6,5)}}$ and

$$P\ell P_{W_2^{(6,5)^*}}^2 = (\ell, \psi_\ell).$$
(17)

Hence, taking into account equalities (7) and (15) we come to the following expression for the norm of ℓ :

$$P\ell P^{2} = (\ell, \psi_{\ell}) = -\sum_{\beta=0}^{N} \sum_{\gamma=0}^{N} C_{5}[\beta]C_{5}[\gamma]G_{1}(h\beta - h\gamma) + +2\sum_{\beta=0}^{N} C_{5}[\beta](\int_{0}^{1} G'_{4}(x - h\beta)dx + \sum_{\gamma=0}^{N} C_{0}[\gamma]G'_{4}(h\beta - h\gamma) - \sum_{\gamma=0}^{N} C_{1}[\gamma]G_{3}(h\beta - h\gamma) - \sum_{\gamma=0}^{N} C_{3}[\gamma]G_{2}(h\beta - h\gamma)) + \sum_{\beta=0}^{N} \sum_{\gamma=0}^{N} C_{0}[\beta]C_{0}[\gamma]G_{6}(h\beta - h\gamma) - 2\sum_{\beta=0}^{N} \sum_{\gamma=0}^{N} C_{0}[\beta]C_{1}[\gamma]G'_{6}(h\beta - h\gamma) - 2\sum_{\beta=0}^{N} \sum_{\gamma=0}^{N} C_{0}[\beta]C_{3}[\gamma]G'_{5}(h\beta - h\gamma) - 2\sum_{\beta=0}^{N} \sum_{\gamma=0}^{N} C_{1}[\beta]C_{1}[\gamma]G'_{6}(h\beta - h\gamma) - 2\sum_{\beta=0}^{N} \sum_{\gamma=0}^{N} C_{1}[\beta]C_{3}[\gamma]G_{4}(h\beta - h\gamma) - 2\sum_{\beta=0}^{N} \sum_{\gamma=0}^{N} C_{1}[\beta]C_{3}[\gamma]G_{3}(h\beta - h\gamma) - 2\sum_{\beta=0}^{N} \sum_{\gamma=0}^{N} C_{1}[\beta]C_{3}[\gamma]G_{4}(h\beta - h\gamma) - 2\sum_{\beta=0}^{N} \sum_{\gamma=0}^{N} C_{1}[\beta]C_{3}[\gamma]G_{4}(h\beta - h\gamma) - 2\sum_{\beta=0}^{N} \sum_{\gamma=0}^{N} C_{3}[\beta]C_{3}[\gamma]G_{3}(h\beta - h\gamma) - 2\sum_{\beta=0}^{N} \sum_{\gamma=0}^{N} C_{1}[\beta]C_{3}[\gamma]G_{4}(h\beta - h\gamma) - 2\sum_{\beta=0}^{N} \sum_{\gamma=0}^{N} C_{3}[\beta]C_{3}[\gamma]G_{3}(h\beta - h\gamma) - 2\sum_{\beta=0}^{N} \sum_{\gamma=0}^{N} C_{1}[\beta]C_{3}[\gamma]G_{4}(h\beta - h\gamma) - 2\sum_{\beta=0}^{N} \sum_{\gamma=0}^{N} C_{3}[\beta]C_{3}[\gamma]G_{3}(h\beta - h\gamma) - 2\sum_{\beta=0}^{N} \sum_{\gamma=0}^{N} C_{1}[\beta]C_{3}[\gamma]G_{4}(h\beta - h\gamma) - 2\sum_{\beta=0}^{N} \sum_{\gamma=0}^{N} C_{3}[\beta]C_{3}[\gamma]G_{3}(h\beta - h\gamma) - 2\sum_{\beta=0}^{N} \sum_{\gamma=0}^{N} C_{1}[\beta]C_{3}[\gamma]G_{4}(h\beta - h\gamma) - 2\sum_{\beta=0}^{N} \sum_{\gamma=0}^{N} C_{3}[\beta]C_{3}[\gamma]G_{3}(h\beta - h\gamma) - 2\sum_{\beta=0}^{N} \sum_{\gamma=0}^{N} C_{1}[\beta]C_{3}[\gamma]G_{4}(h\beta - h\gamma) - 2\sum_{\beta=0}^{N} \sum_{\gamma=0}^{N} C_{3}[\beta]C_{3}[\gamma]G_{3}(h\beta - h\gamma) - 2\sum_{\beta=0}^{N} \sum_{\gamma=0}^{N} \sum_{\gamma=0}^{N} C_{1}[\beta]C_{3}[\gamma]G_{4}(h\beta - h\gamma) - 2\sum_{\beta=0}^{N} \sum_{\gamma=0}^{N} \sum_{\gamma=0}^{N} C_{3}[\beta]C_{3}[\gamma]G_{3}(h\beta - h\gamma) - 2\sum_{\beta=0}^{N} \sum_{\gamma=0}^{N} \sum_{\gamma=0}^{N} \sum_{\gamma=0}^{N} C_{1}[\beta]C_{3}[\gamma]G_{4}(h\beta - h\gamma) - 2\sum_{\beta=0}^{N} \sum_{\gamma=0}^{N} \sum_$$

where $G_6(x)$ is defined by (16),

$$G_{1}(x) = \frac{\operatorname{sgnx}}{2} \left(\frac{e^{x} - e^{-x}}{2} \right), G_{2}(x) = \frac{\operatorname{sgnx}}{2} \left(\frac{e^{x} - e^{-x}}{2} - x \right), G_{3}(x) = \frac{\operatorname{sgnx}}{2} \left(\frac{e^{x} - e^{-x}}{2} - \frac{x^{3}}{3!} - x \right), (19)$$

$$G_{4}(x) = \frac{\operatorname{sgnx}}{2} \left(\frac{e^{x} - e^{-x}}{2} - \frac{x^{5}}{5!} - \frac{x^{3}}{3!} - x \right), G_{5}(x) = \frac{\operatorname{sgnx}}{2} \left(\frac{e^{x} - e^{-x}}{2} - \frac{x^{7}}{7!} - \frac{x^{5}}{5!} - \frac{x^{3}}{3!} - x \right).$$

Thus, we have calculated the norm of the error functional (7).

In the next section we find the minimum of the expression (18) by coefficients $C_5[\beta]$, $\beta = 0, 1, ..., N$, under the condition (13).

2.2 The minimization of the norm (18)

Here we solve the problem of finding the minimum of (18) by coefficients $C_5[\beta], \beta = 0, 1, ..., N$ under the condition (13). For this we use the Lagrange method.

Consider the following function

ISSN 2694-9970

MIDDLE EUROPEAN SCIENTIFIC BULLETIN

$$\Psi(C_5[0], C_5[1], ..., C_5[N], d) = \mathbb{P}\ell \mathbb{P}^2 - 2d(\ell, e^{-x}).$$

Equating to zero the partial derivatives of the function Ψ by $C_5[\beta]$, $\beta = 0, 1, ..., N$ and d we get the following system of N + 2 linear equations

$$\sum_{\gamma=0}^{N} C_{5}[\gamma] G_{1}(h\beta - h\gamma) + de^{-h\beta} = F(h\beta), \ \beta = 0, 1, 2, ..., N,$$
(20)
$$\sum_{\gamma=0}^{N} C_{5}[\gamma] e^{-h\gamma} = g,$$
(21)

where

$$F(h\beta) = \int_{0}^{1} G_{4}'(x-h\beta)dx + \sum_{\gamma=0}^{N} C_{0}[\gamma]G_{4}'(h\beta-h\gamma) - \sum_{\gamma=0}^{N} C_{1}[\gamma]G_{3}(h\beta-h\gamma) - \sum_{\gamma=0}^{N} C_{2}[\gamma]G_{2}(h\beta-h\gamma),$$
(22)

$$g = e^{-1} - 1 + \sum_{\gamma=0}^{N} C_0[\gamma] e^{-h\gamma} - \sum_{\gamma=0}^{N} C_1[\gamma] e^{-h\gamma} - \sum_{\gamma=0}^{N} C_2[\gamma] e^{-h\gamma}.$$
(23)

In this system $C_5[\beta]$, $\beta = 0, 1, ..., N$ and d are unknowns, that is, the above system has N + 2 unknowns and N + 2 linear equations. This system has only solution for every fixed natural N and this solution gives the minimum to the norm (18).

Further, we find an exact solution of the system (20)-(21).

2.3. The solution of the system (20)-(21).

In this section we solve the system (20)-(21). Here we use the concept of discrete argument functions (or functions of discrete argument) and operations on them following by S.L.Sobolev [7, 8].

Suppose φ and ψ are real-valued functions of real variable x and are defined in the real line R. Let h be a small positive number.

A function $\varphi(h\beta)$ is called *a discrete argument function* if it is defined on some of integer values of β . *The inner product* of two discrete argument functions $\varphi(h\beta)$ and $\psi(h\beta)$ is defined as the following number

$$\left[\varphi(h\beta), \psi(h\beta)\right] = \sum_{\beta = -\infty}^{\infty} \varphi(h\beta) \cdot \psi(h\beta),$$

if the series on the right hand side of the last equality converges absolutely.

The convolution of two discrete argument functions $\varphi(h\beta)$ and $\psi(h\beta)$ is the following inner product

$$\varphi(h\beta) * \psi(h\beta) = \left[\varphi(h\gamma), \psi(h\beta - h\gamma)\right] = \sum_{\gamma = -\infty}^{\infty} \varphi(h\gamma) \cdot \psi(h\beta - h\gamma)$$

237

...

ISSN 2694-9970

Moreover, we use the following discrete analogue of the differential operator $\frac{d^2}{dx^2} - 1$ constructed in the work [2].

The discrete analogue $D_1(h\beta)$ of the differential operator $\frac{d^2}{dx^2} - 1$ satisfying the equation

 $D_1(h\beta) * G_1(h\beta) = \delta_d(h\beta)$

has the form

$$D_{1}(h\beta) = \frac{1}{1 - e^{2h}} \begin{cases} 0, & |\beta| \ge 2, \\ -2e^{h}, & |\beta| = 1, \\ 2(1 + e^{2h}), & \beta = 0, \end{cases}$$
(24)

where $G_1(h\beta) = \frac{\operatorname{sgn}(h\beta)}{2} \left(\frac{e^{h\beta} - e^{-h\beta}}{2} \right)$ and $\delta_d(h\beta) = \begin{cases} 1, & \beta = 0, \\ 0, & \beta \neq 0. \end{cases}$

Furthermore, $D_1(h\beta)$ has the following properties

$$D_1(h\beta) * e^{h\beta} = 0 \text{ and } D_1(h\beta) * e^{-h\beta} = 0.$$
 (25)

Now suppose that $C_5[\beta] = 0$ when $\beta = -1, -2, ...$ and $\beta = N+1, N+2, ...$ Then we can rewrite the system (20)-(21) in the following convolution form

$$C_{5}[\beta] * G_{1}(h\beta - h\gamma) + de^{-h\beta} = F(h\beta), \ \beta = 0, 1, ..., N,$$
(26)
$$\sum_{\gamma=0}^{N} C_{5}[\gamma] e^{-h\gamma} = g$$
(27)

where

$$F(h\beta) = (e^{-h\beta} - e^{h\beta - 1}) \cdot \frac{e+1}{4} \left(1 - \frac{h}{2} + \frac{h^2}{12} - \frac{h^4}{720} - \frac{h}{e^h - 1} \right),$$
(28)

and

$$g = \frac{1-e}{e} \cdot \left(1 - \frac{h}{2} + \frac{h^2}{12} - \frac{h^4}{720} - \frac{h}{e^h - 1}\right)$$
(29)

which are obtained by calculating the right hand sides of (22) and (23), respectively.

We have the following main result of the work.

Theorem 2.1 The coefficients of the optimal quadrature formula in the form (1) in the space $W_2^{(6,5)}(0,1)$ have the following forms:

$$C_{5}[0] = \frac{h(e^{h} + 1)}{2(e^{h} - 1)} + \frac{h^{4}}{720} - \frac{h^{2}}{12} - 1,$$

$$C_{5}[\beta] = 0, \qquad \beta = 1, 2, ..., N - 1,$$

$$C_{5}[N] = -\frac{h(e^{h} + 1)}{2(e^{h} - 1)} - \frac{h^{4}}{720} + \frac{h^{2}}{12} + 1.$$
(30)

ISSN 2694-9970

Proof. We denote the left hand side of (26) by

$$u(h\beta) = C_5[\beta] * G_1(h\beta) + de^{-h\beta}.$$
 (31)

Then we get

239

$$C_5[\beta] = D_1(h\beta) * u(h\beta).$$
(32)

Indeed, if the discrete argument function $u(h\beta)$ is defined at all integer values of β , then using (24) and (32), and taking (25) into account, we get

$$\begin{split} D_{1}(h\beta) * u(h\beta) &= D_{1}(h\beta) * (G_{1}(h\beta) * C_{5}[\beta]) + D_{1}(h\beta) * (d \ e^{-h\beta}) \\ &= C_{5}[\beta] * (D_{1}(h\beta) * G_{1}(h\beta)) \\ &= C_{5}[\beta] * \delta_{d}(h\beta) \\ &= C_{5}[\beta]. \end{split}$$

Hence, in order to find $C_4[\beta]$ the function $u(h\beta)$ must be found at all integer values of β .

From (26) we get that

$$u(h\beta) = F(h\beta) \text{ for } \beta = 0, 1, \dots, N, \tag{33}$$

where $F(h\beta)$ is defined by (28).

Next we find $u(h\beta)$ for $\beta = -1, -2, \dots$ and $\beta = N+1, N+2, \dots$

For the cases $\beta = -1, -2, \dots$, from (31), using (27), we get

$$u(h\beta) = -\frac{1}{4}e^{h\beta}g + e^{-h\beta}\frac{1}{4}\sum_{\gamma=0}^{N}C_{5}[\gamma]e^{h\gamma} + de^{-h\beta}.$$
(34)

Similarly, for the cases $\beta = N + 1, N + 2, ...,$ we have

$$u(h\beta) = \frac{1}{4}e^{h\beta}g - e^{-h\beta}\frac{1}{4}\sum_{\gamma=0}^{N}C_{5}[\gamma]e^{h\gamma} + de^{-h\beta}.$$
(35)

Combining (33), (34) and (35), denoting $D = \frac{1}{4} \sum_{\gamma=0}^{N} C_5[\gamma] e^{h\gamma}$, we get the following

MIDDLE EUROPEAN SCIENTIFIC BULLETIN ISSN 2694-9970

$$u(h\beta) = \begin{cases} -\frac{1}{4}e^{h\beta}g + (d+D)e^{-h\beta}, & \beta \le 0, \\ F(h\beta), & 0 \le \beta \le N, \\ \frac{1}{4}e^{h\beta}g + (d-D)e^{-h\beta}, & \beta \ge N. \end{cases}$$
(36)

In the last equation d and D are unknowns. To find these unknowns we use the values of $u(h\beta)$ at points $\beta = 0$ and $\beta = N$. Then we get the following system of equations

$$d + D - \frac{1}{4}g = F(0) \text{ for } \beta = 0,$$

$$d - D - \frac{e^2}{4}g = eF(1) \text{ for } \beta = N.$$

Solving this system we get

$$d = 0, \qquad D = \frac{e-1}{4} \left(1 - \frac{h}{2} + \frac{h^2}{12} - \frac{h^4}{720} - \frac{h}{e^h - 1} \right). \tag{37}$$

As a result, from (32) for $\beta = 0, 1, ..., N$, using (24) and (36) with (37), by direct calculation we get (30). Theorem 2.1 is proved.

Thus, we have found the optimal coefficients $C_5[\beta]$, $\beta = 0, 1, 2, ..., N$ satisfying the equality (14).

References

240

- 1. J.H. Ahlberg, E.N. Nilson, J.L. Walsh, The Theory of Splines and Their Applications, Academic Press, New York London, 1967.
- 2. Kh.M. Shadimetov, A.R. Hayotov, Construction of the discrete analogue of the differential operator $\frac{d^{2m}}{dx^{2m}} \frac{d^{2m-2}}{dx^{2m-2}}$, Uzbek mathematical journal, 2004, no.2, pp. 85-95.
- 3. Kh.M. Shadimetov, A.R. Hayotov, Optimal quadrature formulas with positive coefficients in $L_2^{(m)}(0,1)$ space, J. Comput. Appl. Math. 235 (2011) 1114–1128.
- 4. Kh.M. Shadimetov, A.R. Hayotov, Optimal quadrature formulas in the sense of Sard in $W_2^{(m,m-1)}$ space, Calcolo 51 (2014) 211–243.
- 5. Kh.M. Shadimetov, A.R. Hayotov, F.A. Nuraliev, On an optimal quadrature formula in Sobolev space $L_2^{(m)}(0,1)$, J. Comput. Appl. Math. 243 (2013) 91–112.
- 6. Kh.M. Shadimetov, A.R. Hayotov, F.A. Nuraliev, Optimal quadrature formulas of Euler-Maclaurin type, Applied Mathematics and Computation 276 (2016) 340–355.
- 7. S.L. Sobolev, Introduction to the Theory of Cubature Formulas (Russian), Nauka, Moscow, 1974.

- 8. S.L. Sobolev, V.L. Vaskevich, The Theory of Cubature Formulas, Kluwer Academic Publishers Group, Dordrecht, 1997.
- 9. Hayotov A. R., Rasulov R. G. The order of convergence of an optimal quadrature formula with derivative in the space \$ W_2^{(2, 1)} \$ //arXiv preprint arXiv:1908.00450. 2019.
- Hayotov A., Rasulov R. Improvement of the accuracy for the Euler-Maclaurin quadrature formulas //AIP Conference Proceedings. – AIP Publishing LLC, 2021. – T. 2365. – №. 1. – C. 020035.
- Хаётов А. Р., Расулов Р. Г., Сайфуллаева Н. Б. Extension of the Euler-Maclaurin quadrature formula in a Hilbert space //Проблемы вычислительной и прикладной математики. – 2020. – №. 2 (26). – С. 12-23.
- 12. Хаетов А. Р., Расулов Р. Г. Расширение квадратурной формулы Эйлера-Маклорена в пространстве W //Matematika Instituti Byulleteni Bulletin of the Institute of Mathematics Бюллетень Института. 2020. №. 3. С. 167-176.
- 13. ABDULKHAEV Z. E. Protection of Fergana City from Groundwater //Euro Afro Studies International Journal. 2021. №. 6. C. 70-81.
- 14. Abdulkhaev, Zokhidjon E., et al. "Calculation of the Transition Processes in the Pressurized Water Pipes at the Start of the Pump Unit." JournalNX, vol. 7, no. 05, 2021, pp. 285-291, doi:10.17605/OSF.IO/9USPT.
- 15. Zokhidjon Erkinjonovich Abdulkhaev, Mamadali Mamadaliyevich Madraximov, Salimjon Azamdjanovich Rahmankulov, & Abdusalom Mutalipovich Sattorov. (2021). Increasing the efficiency of solar collectors installed in the building. "ONLINE CONFERENCES&Quot; PLATFORM, 174–177. Retrieved from http://papers.online-conferences.com/index.php/titfl/article/view/167
- 16. Sattorov A. M., Xujaxonov Z. Z. APPROACH CALCULATION OF CERTAIN SPECIFIC INTEGRALS BY INTERPOLATING POLYNOMIALS //Scientific Bulletin of Namangan State University. 2019. T. 1. №. 3. C. 10-12.
- 17. Bozarov B. I. An optimal quadrature formula with sinx weight function in the Sobolev space //UZBEKISTAN ACADEMY OF SCIENCES VI ROMANOVSKIY INSTITUTE OF MATHEMATICS. – 2019. – C. 47.
- 18. Hayotov A., Bozarov B. Optimal quadrature formulas with the trigonometric weight in the Sobolev space //AIP Conference Proceedings. AIP Publishing LLC, 2021. T. 2365. №. 1.