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ABSTRACT 

In the paper we consider an extension problem of the Euler-Maclaurin quadrature formula in the 

space   by constructing an optimal quadrature formula. 
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1. Statement of the problem. 

Consider the following quadrature formula 
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[ ]5C β  are unknown coefficients of the quadrature formula (1), 
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, N  is a natural number. 

We suppose that integrands ϕ  belong to 
(6,5)

2W , where by 
(6,5)

2W  is the class of all functions ϕ  

defined on [0; 1] which posses an absolutely continuous sixth derivative and whose fifth derivative is 

in 2 (0,1)L  (see [4]). The class 
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(see, for example, [1, 4]). The space 
(6,5)

2W  is equipped by the corresponding norm  
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 The error of the formula (1) is the difference  
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which is called the error functional of the quadrature formula (1), where [0,1]( )xε  is the indicator of 

the interval [0; 1], δ  is Dirac’s delta-function. The value of the error functional l  at a function ϕ  is 

calculated as ( , ) = ( ) ( )x x dxϕ ϕ
∞

−∞
∫l l  (see [7]) and l  is a linear functional in 
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2W  space, where 
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2W  is the conjugate space to the space 

(6,5)
2W . 

Since the error functional (7) is defined on the space 
(6,5)

2W  it is necessary to impose the following 

conditions for the error functional l  
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The equations (8)-(13) show that the quadrature formula (1) is exact to the functions 
2 31, , ,x x x  and 

xe−
. One can see that the coefficients 0[ ]C β , 1[ ]C β , 2[ ]C β  and 5[ ]C β  defined by equalities (2), 

(3) and (4) satisfy equations (8), (9), (10), (11) and (12). Therefore for unknown coefficients 

5[ ], = 0,1,...,C Nβ β , we have only equation (13). 

The absolute value of the error (6) is estimated from above by the norm  
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2 , 0 (6,5)(6,5)

22

,
= sup

W

WW
ϕ ϕ

ϕ
ϕ≠

l
l

P P P P
 

of the error functional l  as follows  
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Furthermore, one can see from (6) that the norm of the error functional (7) depends on coefficients 

5[ ]C β . 

Thus, in order to construct an optimal quadrature formula of the form (1) in the sense of Sard we 
have to solve the following problem. 

Problem 1. Find the minimum for the norm of the error functional (7) by coefficients 5[ ]C β , i.e.  

(6,5)* (5,4)*
2 2[ ]4

= .inf
W W

C β
l l  (14) 

The coefficients satisfying equality (14) are called optimal coefficients and are denoted as 5[ ]C β , 

= 0,1,..., Nβ . 

For solving Problem 1, first, we find an expression for the norm of the error functional (7) and next, 

we calculate it’s minimum by coefficients 5[ ]C β , = 0,1,..., Nβ . 

The rest of the paper is organized as follows: 

2. Coefficients of the optimal quadrature formula. 

2.1.The norm of the error functional l . 

To get a representation of the norm of the error functional (7) in the space 
(6,5)

2 (0,1)W  we use the 

extremal function for this functional (7) which satisfies the following equality (see [7, 8]):  
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l
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2W  we get the following formula  
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4 3 2
4 4 3 2 1 0( ) =P x p x p x p x p x p+ + + +  is a polynomial of degree three and d  is a real number. 

Furthermore, from the results of [4] we have (6,5)* (6,5)
2 2
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lP P P P  and  
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Hence, taking into account equalities (7) and (15) we come to the following expression for the norm 
of l :  
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where 6 ( )G x  is defined by (16),  
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 Thus, we have calculated the norm of the error functional (7). 

In the next section we find the minimum of the expression (18) by coefficients 5[ ]C β , 

= 0,1,..., Nβ , under the condition (13). 

2.2  The minimization of the norm (18) 

Here we solve the problem of finding the minimum of (18) by coefficients 5[ ], = 0,1,...,C Nβ β  

under the condition (13). For this we use the Lagrange method. 

Consider the following function  
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Equating to zero the partial derivatives of the function Ψ  by 5[ ]C β , = 0,1,..., Nβ  and d  we get 

the following system of 2N +  linear equations  
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In this system 5[ ], = 0,1,...,C Nβ β  and d  are unknowns, that is, the above system has 2N +  

unknowns and 2N +  linear equations. This system has only solution for every fixed natural N  and 
this solution gives the minimum to the norm (18). 

Further, we find an exact solution of the system (20)-(21). 

2.3.The solution of the system (20)-(21). 

In this section we solve the system (20)-(21). Here we use the concept of discrete argument functions 
(or functions of discrete argument) and operations on them following by S.L.Sobolev [7, 8]. 

Suppose ϕ  and ψ  are real-valued functions of real variable x  and are defined in the real line R . 

Let h  be a small positive number. 

A function ( )hϕ β  is called a discrete argument function if it is defined on some of integer values of 
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Moreover, we use the following discrete analogue of the differential operator 
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the work [2]. 
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Furthermore, 1( )D hβ  has the following properties  
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Now suppose that 5[ ]C β =0 when = 1, 2,...β − −  and = 1, 2,...N Nβ + + . Then we can rewrite 

the system (20)-(21) in the following convolution form  
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2 41
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e e
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 which are obtained by calculating the right hand sides of (22) and (23), respectively. 

We have the following main result of the work. 

Theorem 2.1  The coefficients of the optimal quadrature formula in the form (1) in the space 
(6,5)

2 (0,1)W  have the following forms:  
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Proof. We denote the left hand side of (26) by  
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 Indeed, if the discrete argument function ( )u hβ  is defined at all integer values of β , then using 

(24) and (32), and taking (25) into account, we get  
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In the last equation d  and D  are unknowns. To find these unknowns we use the values of ( )u hβ  

at points = 0β  and = Nβ . Then we get the following system of equations  

2

1
= (0) = 0,

4

= (1) = .
4

d D g F for

e
d D g eF for N

β

β

+ −

− −
 

Solving this system we get  

2 41
= 0, = 1 .

4 2 12 720 1h

e h h h h
d D

e

 − − + − − − 
 (37) 

As a result, from (32) for = 0,1,..., Nβ , using (24) and (36) with (37), by direct calculation we get 

(30). Theorem 2.1 is proved. 

Thus, we have found the optimal coefficients 5[ ]C β , = 0,1,2,..., Nβ  satisfying the equality (14). 

References 

1. J.H. Ahlberg, E.N. Nilson, J.L. Walsh, The Theory of Splines and Their Applications, 
Academic Press, New York – London, 1967. 

2. Kh.M. Shadimetov, A.R. Hayotov, Construction of the discrete analogue of the differential 

operator 

2 2 2

2 2 2

m m

m m

d d

dx dx

−

−− , Uzbek mathematical journal, 2004, no.2, pp. 85-95. 

3. Kh.M. Shadimetov, A.R. Hayotov, Optimal quadrature formulas with positive coefficients in 
( )
2 (0,1)mL  space, J. Comput. Appl. Math. 235 (2011) 1114–1128. 

4. Kh.M. Shadimetov, A.R. Hayotov, Optimal quadrature formulas in the sense of Sard in 
( , 1)

2
m mW −

 space, Calcolo 51 (2014) 211–243. 

5. Kh.M. Shadimetov, A.R. Hayotov, F.A. Nuraliev, On an optimal quadrature formula in 

Sobolev space 
( )
2 (0,1)mL , J. Comput. Appl. Math. 243 (2013) 91–112. 

6. Kh.M. Shadimetov, A.R. Hayotov, F.A. Nuraliev, Optimal quadrature formulas of Euler-
Maclaurin type, Applied Mathematics and Computation 276 (2016) 340–355. 

7. S.L. Sobolev, Introduction to the Theory of Cubature Formulas (Russian), Nauka, Moscow, 
1974. 



MIDDLE EUROPEAN SCIENTIFIC BULLETIN ISSN 2694-9970  241  

    Middle European Scientific Bulletin, VOLUME 18 Nov 2021

 

 

8. S.L. Sobolev, V.L. Vaskevich, The Theory of Cubature Formulas, Kluwer Academic 
Publishers Group, Dordrecht, 1997. 

9. Hayotov A. R., Rasulov R. G. The order of convergence of an optimal quadrature formula with 
derivative in the space $ W_2^{(2, 1)} $ //arXiv preprint arXiv:1908.00450. – 2019. 

10. Hayotov A., Rasulov R. Improvement of the accuracy for the Euler-Maclaurin quadrature 
formulas //AIP Conference Proceedings. – AIP Publishing LLC, 2021. – Т. 2365. – №. 1. – С. 
020035. 

11. Хаётов А. Р., Расулов Р. Г., Сайфуллаева Н. Б. Extension of the Euler-Maclaurin quadrature 
formula in a Hilbert space //Проблемы вычислительной и прикладной математики. – 2020. 
– №. 2 (26). – С. 12-23. 

12. Хаетов А. Р., Расулов Р. Г. Расширение квадратурной формулы Эйлера-Маклорена в 
пространстве W //Matematika Instituti Byulleteni Bulletin of the Institute of Mathematics 
Бюллетень Института. – 2020. – №. 3. – С. 167-176. 

13. ABDULKHAEV Z. E. Protection of Fergana City from Groundwater //Euro Afro Studies 
International Journal. – 2021. – №. 6. – С. 70-81. 

14. Abdulkhaev, Zokhidjon E., et al. "Calculation of the Transition Processes in the Pressurized 
Water Pipes at the Start of the Pump Unit." JournalNX, vol. 7, no. 05, 2021, pp. 285-291, 
doi:10.17605/OSF.IO/9USPT. 

15. Zokhidjon Erkinjonovich Abdulkhaev, Mamadali Mamadaliyevich Madraximov, Salimjon 
Azamdjanovich Rahmankulov, & Abdusalom Mutalipovich Sattorov. (2021). Increasing the 
efficiency of solar collectors installed in the building. &quot;ONLINE - 
CONFERENCES&Quot; PLATFORM, 174–177. Retrieved from http://papers.online-
conferences.com/index.php/titfl/article/view/167 

16. Sattorov A. M., Xujaxonov Z. Z. APPROACH CALCULATION OF CERTAIN SPECIFIC 
INTEGRALS BY INTERPOLATING POLYNOMIALS //Scientific Bulletin of Namangan 
State University. – 2019. – Т. 1. – №. 3. – С. 10-12. 

17. Bozarov B. I. An optimal quadrature formula with sinx weight function in the Sobolev space 
//UZBEKISTAN ACADEMY OF SCIENCES VI ROMANOVSKIY INSTITUTE OF 
MATHEMATICS. – 2019. – С. 47. 

18. Hayotov A., Bozarov B. Optimal quadrature formulas with the trigonometric weight in the 
Sobolev space //AIP Conference Proceedings. – AIP Publishing LLC, 2021. – Т. 2365. – №. 1. 


