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ABSTRACT 

In this paper, the turbulent flow in an asymmetric two-dimensional diffuser is investigated. In many 

applications, it is important to know whether the boundary layer (laminar or turbulent by calculating 

the Reynolds number, which is the ratio of the inertia force to the viscous fluid flow force) will 

separate from the surface or inside a particular body. If this happens, it is also important to know 

exactly where the flow separation will occur. The separation can be internal or external. This is 

quite important in many tasks. 
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Introduction 

Currently, high-performance computers allow engineers to simulate turbulent flows in areas with 

complex geometry by numerically solving the equations of hydrodynamics, including the equations 

of momentum, continuity and energy using one of the existing methods of computational fluid 

dynamics CFD (Computational Fluid Dynamics). CFD codes are a powerful tool for researching 

practical problems and give satisfactory results. As a rule, CFD has become the basis for 

understanding the basics of flow processes, such as fluid flow, heat transfer, mass transfer, and has 

recently found application in medical fields [1]. 

Flow separation occurs when the boundary layer passes far enough away from the unfavorable 

pressure gradient, so that the velocity of the boundary layer relative to the object drops to almost zero 

[2,3]. The fluid flow breaks away from the surface of the object and as a result takes the form of 

vortices. The boundary layer closest to the wall or leading edge is flipped in the direction of flow. 

The point between the forward and reverse flow is called the separation point, where the shear stress 

is zero. Initially, the entire boundary layer thickens rapidly at the point of separation, and then is 

repelled from the surface by the reverse flow [4]. Sebechi et al. [5] accurately calculated the 

separation points in incompressible turbulent flows using four prediction methods, the Goldschmid, 

Stratford, Head and Chebechi-Smith method, and then confirmed them experimentally. Knob et al . 

[6] studied the dynamics of boundary layer separation using the PIV method and time-resolved 

biorthogonal decomposition in order to theoretically study the rapid structure of the separation 

region, its development and coherent structures, as well as the simple case of an unfavorable pressure 

gradient. Gustavsson [7] and Yan et al. [8] experimentally studied flow separation using a high-

resolution PIV (Particle Image Velocimetry) system to study the rapid structure of the separation 

region, its development and the attachment of a turbulent flow. The results obtained were compared 

with conventional measurements using static pressure taps [8], a hot-wire anemometer and a Preston 

tube. Chandavari et al., [9] investigated the flow flow in a flat diffuser by changing the cone angle of 

the diffuser for axisymmetric expansion to delay separation. Thornblom et al. [10] experimentally 
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and numerically studied a new approach to controlling flow separation using longitudinal vortices. 

Studies of flows in diffusers or channels with sudden expansion are important from the point of view 

of fundamental fluid mechanics and many practical applications because they present all the 

difficulties of separating and reconnecting a turbulent flow in the presence of an unfavorable 

pressure gradient [11-13]. Turbulent fluid flows through an asymmetric geometry or a sudden 

expansion channel are common in many technical applications, such as combustion chambers, 

aircraft, pipelines, nuclear reactors, turbomachine heat exchangers, building fairings, etc. [12,13]. 

Buis and Eaton [14] experimentally investigated the flow in an asymmetric flat diffuser, and their 

diffuser has so far been widely recognized as a reference. Numerous studies of the flow in an 

asymmetric flat diffuser using various turbulence models have been carried out numerically. 

Berdanier [13] was the first to apply the one-parameter Spalart-Almares turbulence model. Then 

such models as k-ε, k-ω and the Reynolds stress model with five equations were used. Salehi et al . 

[15] used the low-Reynolds model k-ε, k-ω, v2 - 𝑓 and a modified version of the Reynolds stress 

model. Similarly, Kumar and Kabbur [16] used k-ε, k-ω and RNG models. Elbehery [14] and 

Laccarino [17] used low-Reynolds models k-ε, k-ω. In a similar study, Jamil et al. [18] came to the 

conclusion that it is possible to use turbulence models in relation to flow in a rectangular channel and 

in a channel with partitions. All models are consistent very close to the experimental data. In another 

study, Saqr et al., [19] numerically investigated a limited vortex flow using a modified k-ε turbulence 

model. The modified k-ε turbulence model shows better performance compared to the RNG k-ε and 

the standard k-ε model. Obi et al. [20] experimentally and computationally studied the separation in 

an asymmetric flat diffuser, and their work received wide attention. Others who have studied this 

phenomenon both experimentally and computationally include Klistafani [21] and Tornblom [22], 

and their results are consistent with these two methods when compared. 

As far as the authors know, insufficient studies of the flow in a standard asymmetric two-

dimensional Buice diffuser have been carried out. Therefore, the purpose of this study is a numerical 

analysis of flow asymmetric two-dimensional diffusers using various turbulence models and a 

comparison of their results. The results of this study can be useful for understanding turbulence, 

separation and attachment, as well as for selecting suitable turbulence models that are important for 

the study of practical engineering applications. 

Mathematical statements and computational methods 

For the numerical study of the problem, a system of equations averaged by Reynolds Navier-Stokes 

equations is used, which has the form 
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Here iU  – air flow velocity– p  - hydrostatic pressure–  - gas density;   - its molecular viscosity; 

''uv ji - components of the Reynolds stress tensor. This system of equations is open-ended and semi-

empirical turbulence models are used to close it. In many models, a generalized Boussinesq 

hypothesis is used to close the system of equations (1), which is called the linear approach 
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Here is tv  -  the turbulent viscosity that needs to be determined. 

In this paper, seven turbulence models were used to determine the turbulent viscosity, which are 

embedded in the COMSOL Multiphysics software package. 

Turbulence models 

The Spalart-Allmaras model: This model belongs to the class of one-parameter turbulence models. 

Here there is only one additional equation for calculating the kinematic coefficient of vortex 

viscosity. 
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The turbulent vortex viscosity is calculated from:
1
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k-ε turbulence model: k-ε Two additional equations are written in the k-ε turbulence model to 

calculate the kinetic energy of turbulence k and the rate of dissipation of kinetic energy ε. 
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The turbulent vortex viscosity is calculated by:
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SST-модель: The SST model is a combination of k-ε and k-ω turbulence models: to calculate the 

flow in a free flow, the equations are used k-ε models, and in the area near the walls — equations k-

ω models: 
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The turbulent vortex viscosity is calculated by:
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ak
t

,max 
  . 

k-ω turbulence model: The k-ω model is similar to k-ε, only here is the equation for the specific rate 

of kinetic energy dissipation solved ω.  
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The turbulent vortex viscosity is calculated by:



k

t
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L-VAL and yPlus: Algebraic turbulence models L-VEL and plus allow you to calculate the coefficient 

of turbulent viscosity depending on the local velocity of the liquid and the distance from the wall. No 

additional transfer equations need to be solved in these models. At the same time, they can be used to 

calculate the entire flow area. 
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v2-f turbulence model: Near solid walls, the intensity of velocity fluctuations in the direction 

tangential to the wall is usually much higher than the intensity of fluctuations in the direction normal 

to the wall. In other words, velocity fluctuations are characterized by anisotropy. As you move away 

from the wall, the intensity of fluctuations in all directions becomes the same. The velocity 

fluctuations become homogeneous or isotropic. The anisotropy of turbulent fluctuations in the 

boundary layer is described v2-f turbulence model by introducing two additional equations solved 

together with the equations for the kinetic energy of turbulence (k) and the rate of kinetic energy 

dissipation (ε). 
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The turbulent vortex viscosity is calculated by: 

kC

t
 . 

Initial and boundary conditions 

The geometry of a two-dimensional asymmetric flat diffuser is shown in Figure 1, where the 

dimensions were in accordance with Buice and Eaton [14]. Input channel length (15H). The flow is 

considered incompressible, uniform, while the Uo value at the inlet is such that the Mach number is 

less than 0.3. Here Re is the Reynolds number 20000, 𝜌 is the density (1,225 𝑘𝑔/𝑚3), H is the height 

of the diffuser inlet (0.01 m), and 𝜇 is the viscosity 1,789 × 10-5. 0-5. The density and viscosity 

values were obtained from the properties of the air in COMSOL. 

 

Fig. 1. Diagram of the design area of a flat asymmetric diffuser. 

The calculation area was divided into three parts. The first vertical wall is the entrance and is 

configured for the boundary condition of the inflow. The last vertical wall is the outlet and is set to 

the outflow boundary condition. The upper and lower (horizontal) walls are installed in the boundary 

state of the wall. The same boundary conditions were used for all turbulence models. 

Solution method. For the equation of momentum and turbulent quantities, a sampling scheme 

against the flow of the first order was used. As a rule, the properties of the numerical scheme - 

satisfactory accuracy or consistency, stability and convergence were provided. Caretto et al., [23] 

Patankar and Spalding [24] and Patankar [25] developed the SIMPLE algorithm defined as used for 

pressure-velocity coupling [26-29]. 

The values of U/U0 at various cross sections or curve lengths, namely at x/H=6, x/H=14, x/H=24 and 
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x/H=34 measured from the expansion point, of various turbulence models are compared with 

experimental results for a 2D asymmetric diffuser, and are presented in Figures 15-17 below. 

  

х/H = 6 х/H = 14 

  

х/H = 24 х/H = 34 

Fig.2. Comparison of the results of turbulence models with experimental data (rhombuses):1-SA, 

2- k-ε, 3-SST, 4- k-ω, 5- L-VEL, 6- yPlus, 7- v2-f. 

Figure 2 shows that at the x/H=6 cross section, the results of all turbulence models do not describe 

the process well, except for the SA model. In the cross section x/H=14, the results of the SA, k-ω and 

SST models are closest to the experimental results. In addition, the results of the turbulence models 

SA, k-ω and SST are almost the same. In the cross section x/H=24, as shown in Figure 2, the results 

of the SA and SST turbulence models are close to experimental data. In the cross section x/H=34, all 

seven turbulence models describe the process poorly. 

Figure 3 shows the isolines of the longitudinal flow velocity for various turbulence models.  

 

SA 

 

k-ε 
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k-ω 

 

L-VEL 

 

yPlus 

 

 

v2-f 

Fig. 3. Isolines of the longitudinal flow velocity for various turbulence models. 

Conclusion 

The main purpose of this study is to analyze various turbulence models of the COMSOL program for 

the numerical study of an asymmetric two-dimensional turbulent flow diffuser. The numerical study 

was carried out by such turbulence models as,SA, k-ε, SST, k-ω, L-VEL, yPlus and v2-f. The results 

obtained were compared with experimental results. The following conclusions can be drawn from the 

comparisons: 

The turbulence models SA, SST and k-ω show the best characteristics at the cross sections x/H =14 

and x/H =24. The separation of the boundary layer is more significant at distances x/H =14, and x/H 

= 24. The results of the turbulence models SA and SST on the cross section x/H = 24 are almost the 

same. Away from the diffuser, namely in the cross section x/H=34, all turbulence models describe 

the flow process unsatisfactorily. 

The differences between numerical results and experimental data are related to the fact that errors in 

numerical results can come from many different sources, including turbulence models. Of course, 

this informal ranking of turbulence models depends largely on the user and the information of 

interest. However, these results have provided significant insight into the possibility of turbulence 

models, which are really invaluable to figure out which CFD turbulence model can be used for 

industrial design tasks. 
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