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Abstract. This article discusses three basic relationships and shows them when applied to 

solving geometric problems. However, teaching students how to use vectors to solve problems in a 

limited curriculum is difficult. To overcome these difficulties, you need a well-thought-out exercise 

system. The proposed article describes the experience in solving this issue.     
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Introduction 

 The apparatus of vector algebra, studied in the course of mathematics, is widely used in proving 

theorems and soling many geometric problems. However, teaching students how to use vectors to solve 

problems in a limited curriculum is difficult. To overcome these difficulties, you need a well-thought-

out exercise system. 

 Let us now proceed to consider the basic vector relations and their application to solving 

problems. 

 1-basic ratio. Any triangle ABC satisfies the equality 

    ,0 MCMBMA
 

 Where M is the centroid of triangle ABC. Let us prove the relation 1. Let M be the centroid of 

triangle ABC (fig.1). Let’s connect point M with all the vertices of the triangle. Line MB intersects AC 

of triangle ABC at point D, which is the midpoint of side AC. 

On the straight line BM we put BMME 
 
and connect the point E 

with the vertices A and C. Obviously, AMCE is a parallelogram. 

Therefore MCMAME  , since MEMB  , then 

0 MCMBMA . Let us show the application of relation 1 to 

problem solving.  

 

 

 

 

fig. 1. 

Task 1.  

The intersection points of the medians of triangles ABC
 
and 111 CBA  coincide. Prove that vectors 

11, BBAA  and 1CC  are coplanar.  
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Solution. Based on 1 we have: 

 0 MCMBMA                     (1) 

 
0111  MCMBMA                   (2)

 
Subtracting parts from (1) and (2), we get: 

0111  CCBBAA
       

(3)
 

Equality (3) means that vectors 11, BBAA  and 1CC  are coplanar. 

Task 2. Prove that if M is the ctntroid of triangle ABC and O is an arbitrary point in space, then 

the equality 

    
 OCOBOAOM 

3

1
   

(4) 

Evidence. We write the following vector equalities: 

  

.

,

,

OCMCOM

OBMBOM

OAMAOM







 

Adding these equalities by parts, we get: 

  
  ,3 OCOBOAMCMBMAOM 

 
from where 

  
 OCOBOAOM 

3

1
 

2-basic ratio. Point D is taken in triangle ABC on side AC so that nmDCAD :;  . Then the 

following relation holds: (fig.2) 
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



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(5) 

Evidence. From triangle ABC we have: 

,BABCAC         






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Let us show further the application of (s) to the solution of problems. 

Task 2. A line AE is drawn through the middle E of the median 1CC
 

of triangle ABC, 

intersecting side BC at point F (fig. 3). Calculate EFAE;
 
and FBCF : .  

Solution. Introduce vectors bAB 
 
and cAC  . Let nmFBCF ::  . The  by formula (5) we 

have: 
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fig. 2 



MIDDLE EUROPEAN SCIENTIFIC BULLETIN ISSN 2694-9970  750  

    Middle European Scientific Bulletin, VOLUME 11 April   2021 
 

 

 

    c
nm

n
b

nm

m
AF





  

    and 

    c
nm

xn
b

nm

xm
AFxAF







  
 (6) 

 fig. 3   where .10  x
 

On the other hand, given that E is the midpoint of the median 1CC , we obtain the following 

expression for AE: 

bcACACAE
4

1

2

1

2

1

2

1
1 

  
 (7) 

Due to the uniqueness of the expansion of the vector in two no collinear vectors from (6) and (7), we 

obtain the system 

     
















2

1

,
4

1

nm

xn

nm

xm

  
     (8) 

Dividing by parts the first equation of system (8) by the second, we obtain that 2:1: nm , i.e. 

 2:1: FBCF . Adding the equations of system (8) by parts, we find that 
4

3
x , i.e. 

1:3: EFAF .  

 3-basic ratio. Given a tetrahedron ABCD and point M in the plane of its face ABC. Prove that 

the decomposition DCDBDADM  
 
satisfies the equality  

  1   

Evidence. Suppose that point M lies inside the triangle ABC (fig. 4). Draw a straight line 

through points A and M that intersects side BC at point E. let point E divide side BC in the ratio nm : , 

i.e. nmECBE ;:  . Then by formula (5) 

DB
nm

n
DC

nm

m
DE





   

                  Let further point M divide segment AE in segment AE   
 
 

               in the ratio qp : , i.e. qpMEAM ;:  . 

               Then  

  





 DA
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          fig. 4              DC
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





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So, the vector DM  is decomposed into vectors DBDA,  and DC  . It is easy to make sure that the sum 

of the coefficients in this decomposition is equal to 1. 

 I.e. 
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Remarks. 1) In those cases when the point M lies outside the triangle or on one of its sides, the 

proofs are similar. 2) The proved relation is a necessary and 
sufficient condition for ( CBA ,,  and

 
M) to 

the same plane. 

When solving geometric problems using the vector method, it is necessary to move from the 

geometric formulation of the problem to its vector description. Then, using the properties of vectors and 

operations on then, find some vector relationships that reflect the data and conditions of the problem, 

from which it is possible to obtain a solution to the problem. 

Given the lengths of three edges PA, PB and PC of the tetrahedron PABC, emanations from its 

vertex P, and the values of the plane angles at this vertex are also known, then using the vectors it is 

possible to find the radius, and therefore the area of the sphere (the volume of the sphere), described 

around this tetrahedron. 

 Consider the following tasks. 

Task 3. In the triangular pyramid PABC, all planar angles at the vertex P are straight. Find the 

area of a sphere circumscribed about this pyramid if  4,3,2  PCPBPA . 

Solution. Let point O be the center of a sphere circumscribed about a tetrahedron PABC, R is the 

radius of the this sphere. Then ROPOCOBOA  . 

We introduce non-coplanar vectors cPCbPBaPA  ,,  we will take them as basic in space. Then 

czbyaxPO   and RPO  . Find the coefficients x, y and z  

    in this expansion of the vector PQ .  

    According to the triangle rule, we have:   

     COcBObAOap 
 
, whence 

      .,, cpCObpBOapAO   

From the equalities OPOCOBOA   (as the radii of a  sphere 

circumscribed about the PABC tetrahedron) it  

fig. 5                 follows that COBOAOPO   , means 

       
22222

pPOCOBOAO        

Then we get 
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 Note that since the basic vectors cba ,,  are pairwise perpendicular and their lengths are 2, 3 and 

4, respectively, then 

  16,9,4,0
222

 cbacbcaba    (9) 

Replacing P with the expression czbyax   in the last system of equations and taxing into account 

(9), we get: 
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Then  

  cbaPQ 5,05,05,0   

 
 

2

29
,

4

29
169425,0

25,025,025,0
2222





PQ
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Means,   29
4

29
44 2  RSsphere   

 The vector solution of many geometric problems is much simpler than their solution by means 

of elementary geometry, the reason for this simplification is that with the vector method of solving it is 

possible to do without those, additional constructions that should be performed in a purely geometric 

solution of even simple problems. Solving geometric problems, it is necessary to be able to translate the 

condition of a geometric problem into vector terminology and symbolism (into vector language), then 

perform the appropriate algebraic operations on vectors and, finally, translate the result obtained in 

vector form back into geometric language. 
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