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ABSTRACT 

The goal of our research is to investigate the collective modes of the anyons localized in 2D 

parabolic well and get the right exact expression for their collective mode frequencies. A study of the 

collective motion of atomic gases, localized in the harmonic trap, belongs to class of actual and 

interesting problems of physics of ultra-cold atomic and molecular systems. A topology of    

systems allows to exist the particles, whoes statistics may be orbitrary between bosons and fermions, 

therefore they call anyons. And these anyons are described with parameter and may be determined 

in the interval between ones for bosons and fermions. The one of intriguing problem of ultra-cold 

atomic gases is a study of the role of the anyon statistics to the system centre mass mode frequencies. 

KEYWORDS: 2D, Anisotropic. 

 

 

1. INTRODUCTION 

It is well-known that all elementary particles fall into one of two possible categories - bosons and 

fermions, depending on whether they obey the Bose-Einstein or the Fermi-Dirac statistics 

respectively. These particle are at least in 3-dimensional space-time. However in two space 

dimensions we do not have only bosons and fermions, but also particles with any statistics in 

between. These particles are called anyons and are the subject of this work. 

Certainly, it is unusual feature of anyons that they arise only in two-dimensional systems and it is 

hard to imagine for both physicists working at totally different field of the physics and people far 

away from science these amazing particles. However, these particles are not simply topological 

fantasies or objects of purely mathematical interest; on the contrary they might play an important role 

in certain physical phenomena of the real world. Of course, since we are living in at least three space 

dimensions where particles can be only bosons or fermions, anyons are not real particles. However 

there exist certain condensed-matter systems (for example thin layers at the interface between 

different semiconductors) that can be regarded effectively as two-dimensional. Their localized 

excitations (if they exist) are quasi-particles subject to the rules of a two-dimensional world. It is 

these quasiparticles that may be anyons and may be observed in certain cases. For example the 

collective excitations above the ground state of systems exhibiting the fractional quantum Hall effect 

(for a review see (Prange and Girvin 1990)) have been identified as localized quasi-particles of 

fractional charge (Laughlin 1983), fractional spin and fractional statistics (Arovas et al. 1984; 

Halperin 1984), and thus they can be regarded as anyons. Furthermore, anyons are conjectured to 

play a role also in the theory of high temperature superconductivity (Chen et al. 1989), even though 

in this case no conclusive word can be said at the moment (Lyons et al. 1990; Kiefl et al. 1990; 

Spielman et al. 1990). 

Such anyonic particles are becoming of increasing importance in condensed matter physics and 

quantum computation. They may play an essential role for describing the fractional quantum Hall 

effect, high-temperature superconductivity, and the physics of topological insulators and 

superconductors. Moreover, anyons as unusual quasiparticles with properties of its statistics are 

adequate tool for implementing a topological quantum computer. All of the mentioned categories in 
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physics are the active issues of the physicists throughout the world. Certainly, all of these emphasize 

the importance of investigating the quantum anyon systems and their collective motion in the 

harmonic trap that has been done in this scientific work. 

Most of the great interest that anyons have attracted in the past few years derives from the 

(unexpected) applications of these ideas to certain two-dimesional condensed matter systems, most 

notably those exhibiting the fractional quantum Hall effect (see for instance (Prange and Girvin 

1990)). In this case a series of new states of matter emerge as incompressible quantum liquids 

(Laughlin 1983) around which the low-energy excitations are localized quasi-particles with unusual 

fractional quantum numbers, i.e. anyons. Furthermore, it is also very likely that anyonic excitations 

with fractional statistics exist in films of liquid 3He in the A-phase (Volovik and Yakovenko 1989). 

The application of anyons to the theory of high temperature superconductivity has also been 

considered quite extensively (for reviews see (Wilczek 1990; Lykken et al. 1991)), but their actual 

relevance in this context is quite controversial and doubtful. 

Since experimentally first ultracold atoms have been realized in harmonic potentials, the goal of our 

work will be the consideration of the collective motion of anyons in the    harmonic trap. 

The present paper is organized as follows. We start with introducing Hamiltonian of the anyons in 

2D parabolic harmonic well in section2. Then, cumulant method is introduced in section3. In 

sections 4 and 5 some calculations have been given by utilizing this method. Next section is devoted 

for deriving the harmonic oscillator equation for the centre-of-mass - the main result of our work. 

Finally, at the end the conclusion is presented. 

2. HAMILTONIAN OF ANYONS TRAPPED IN 2D ANISOTROPIC HARMONIC 

POTENTIAL 

In this section we describe the Hamiltonian of anyons, localized in the    anisotropic trap, which 

expression will be taken from the paper [26] and, following to the paper of Ghost and Sinha [27], we 

write this system Langrangian. 

The Hamiltonian of the gas of   anyons with mass   and charge  , confined in    parabolic well, 

is: 

 ̂  
 

  
∑  

 

   

(  ⃗⃗⃗⃗    (  ⃗⃗  ⃗))
 
 ∑  
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Here   ⃗⃗  ⃗ and   ⃗⃗⃗⃗  represent the position and momentum operators of the   th anyon in    space 

dimension, 

  (  ⃗⃗  ⃗)    ∑  

   

  ⃗⃗  ⃗    ⃗  

|   |
  

is the anyon gauge vector potential [28],        ⃗⃗  ⃗    ⃗⃗  and   ⃗⃗  ⃗ is the unit vector normal to the    

plane. In the expression for vector potential   (  ⃗⃗  ⃗)   is the anyon factor and hereafter we assume 

that      , which means the variation of the anyon factor between bosonic and fermionic limits 

of anyons. 

Our interest is the solution of the Schrödinger equation 

  
  ( ⃗   )

  
  ̂ ( ⃗   ) 

Let us consider first the term in the Hamiltonian  ̂, containing only the anyon vector potential 

  (  ⃗⃗  ⃗). In the bosonic representation of anyons we take the system wave function in the form 

,     - : 
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 ( ⃗   )  ∏  
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Here and above  ⃗  *  ⃗⃗⃗     ⃗⃗  ⃗     ⃗⃗  ⃗+ is the configuration space of the   anyons. The product in the 

right hand side of this equation is the Jastrow-type wave function. It describes the short distance 

correlations between two particles due to anyonic (fermionic) statistics interaction. 

By substituting the wave function of this form into Schrödinger equation (3) without the harmonic 

potential term, we obtain the equation: 
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ing 

As in the paper [27] of Ghosh and Sinha, by introduc- 

   √
 

   
  

where    √    , we make dimensionless the length quantities and denote them by tilde sign. 

We express the energy quantities in the Hamiltonian (1) in the units of    . Then, for instance, the 

harmonic potential term will have the form: 
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where          ̃         ̃        and parameter   is the anisotropic parameter for the 

harmonic potential. 

Now we make dimensionless Hamiltonians  ̂  and  ̂  
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Similarly 

 ̃̂       ∑ 
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where 
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And finaly, we obtain the dimensionless Schrödinger equation: 
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with   ̃     . 

At the end of this section, we emphasize that the wave function   ( ⃗ ̃  ̃) contains the configurational 

space of   anyons vector  ⃗ . Therefore, it corresponds to many particle wave function of system. 

Previously, at the calculation of time variation of BEC, the wave function was a function of only one 

coordinate of condensate (see, for example, the paper [27]) and the solution of problem of BEC 

collective motions in the harmonic trap was essentially easier. 

3. CUMULANTS EQUATION OF MOTION METHOD 

For the description of above mentioned monope and quadrupole modes and also the oscillation of the 

centre of mass motion (the Kohn theorem), we use the cumulants equation of motion method [31, 

34]. According to this method, for the small amplitude oscillations, it is convenient to take the trial 

many body wave function   ( ⃗   ) in the Gaussian form (we use notations, taken from Ref. [31], for 

variational parameters): 

  ( ⃗   )  (
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     * (
 

   
     )  

(     )
        (

 

   
     ) (     )

  

     -

 

Here,    and    are the   and   coordinate components of  -th particle, all variational parameters 

            and      , and centre of mass components    and    are the time   dependent. 

In order to derive the comulants equation of motion, we average over the Schrödinger equation (11) 

the weight     
  : 
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Since the wave function   , Eq. (12), is a Gaussian, no zero these averages are only for two central 

moments. Averages with   
        and   

        provide equations to find the centre of 

mass motion. And averages with   
  (     )

    
  and   

  (     )
    

  provide 

equations to find the widths motion. 

4. AVERAGE QUANTITIES FOR     
  OF IDEAL GAS OF PARTICLES IN 2D 

ANISOTROPIC HARMONIC POTENTIAL 

For the ideal gas of particles in    anisotropic harmonic potential, we have an averaged Schrödinger 

equation: 
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Using the way, Ref. [31], of calculation of this equation integrals, we obtain: 
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5. AVERAGE QUANTITIES FOR     
  WITH ANYON PART OF HAMILTONIAN  ̂ . 

We start with the expression for the square of modulo of wave function   ( ⃗   ), Eq. (12), (for the 

simplicity, everywhere below, we omit signs tilte). It equals to 
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where           and          . 

First, we need to calculate the integral in the average quantities for     
     , related to term 
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The expression for this integral is: 
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We introduce new variables           and            then           and           
and taking into account that 
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the exponential function in the Eq. (24) will have the form: 
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Next, substituting expressions for   , Eq. (23), and exponential function, Eq. (26), in Eq. (24) for 

integral    
 

 then, using the formula, Eq. (44), at the integration of    
 

 over               , we find 

that only the last term        of    gives a non zero contribution into    
 

. And its expression is: 
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At the derivation of this expression for    
 

, we have used the formulas: 
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for      , which can be obtained, using expressions Eqs. (30) - (32): 
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At the calculation of that integral over     , we use the formula         of the book [32]: 

∫  
  

 

  
  

     
   

    
 

  
 
  

 
  

   ,      (  )- 

with ,                  - and     ( ) is the error function. 

At the calculation of obtained integral over the     , we use the formula         of the same book 

[32] of I.S. Gradshteyn and I.M. Ryzhik: 

∫  
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at ,                       - 

In the analogous way, one may calculate the expression for integral    
  for the average quantities of 

    
     . It equals to expression: 

   
    (   )    
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6. AVERAGE QUANTITIES FOR     
  WITH HAMILTONIAN  ̃̂ . 

We calculate the integral in the average quantities for     
     , related to term 
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Again, the expression for this integral is: 
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We follow the procedure of calculation, discribed from Eq. (24) up to Eq. (29), except of substituting 

expressions for   , Eq. (35), and exponential function, Eq. (26), in Eq. (36) for integral    
 

 then, 

using the formula, Eq. (44), at the integration of    
 

 over               , we find that only the 

term         of    gives a non zero contribution into    
 

. We obtain 
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Analogously, we calculate the expression for integral    
  for the average quantities of     

     . It 

equals to expression: 
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We calculate the integral in the average quantities for     
     , related to the last term in the 

Hamiltonian  ̂ . It is: 
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Introducing variables     and    , we expressed the first exponential function in Eq. (40) in the form 

of Eq. (26). Now, we introduce variables     and     then 
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will have a form: 
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Introducing in Eq. (41) last two parts inside of exponential function, Eq. (26), we find the final 

expression of the function      
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Our goal is to calculate the integral: 
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 ∫  
  

  

       
        

   
  

 √
 

 
(
 

 
)
 

∑  

 .
 
 
/

   

 
 

(    ) ( ) 
(
 

   
)
 

 

 

we find 

 ∫  
  

  

         * 
    

 

  
  

 (       )   

  
 +  

  √
 

 
    [

(       )
 

   
 ]

 

and 

 ∫  
  

  

            * 
    

 

  
  

 (       )   

  
 +  

  √
 

 
    [

(       )
 

   
 ]

(       )

 

 

Taking into account the expressions Eq. (45) and Eq. (46), the integral      
 

 transforms into form: 
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with the new expression for      : 
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The first term in the sum                of the last expression for      
 

 does not depend on 

variable    . Therefore, we can calculate the integral 
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For this purpose, we use the definition of Gamma function  ( ) : 
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Using again a formula, Eq. (44), one obtains the result for      : 
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In this expression for     , at variation of variable   in the limits from 0 up to   , the function 
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and thus take the approximate expression for integral 
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We take into account the exponential function       
    from Eq. (52) in the factor           

 

, where 

       
 , of the expression     , and together with obtained this factor the integral over      of 

     
 

 with the first term in the sum                gives: 
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We consider the second term of the sum                 in the integrand of      
 

. It is easy to 

show that 
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if expression for      is taken from Eq. (49). However, from the final expression for     , Eq. (52), 

one obtains    (        )         
     

   . Therefore, using Eq. (53), we find again      
 

  . 

We demonstrated      
 

   at calculating the average quantities for     
     , related to the last 

term in the Hamiltonian  ̂ . One can show that the same average quantities, however, calculating 

now for     
     , give also      

   . To get this result we used the expression 
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7. HARMONIC OSCILLATOR EQUATION FOR THE CENTRE-OF-MASS. 

Substituting in the Schrödinger equation, Eq. (13), results of average quantities for     
 , calculated in 

the above three sections, we find the equations of motion for the    coordinate 
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of the centre-of-mass. In equations Eqs. (57) - (58)       and        

Equating imaginary parts of both these equations, we find: 
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from where 
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Here, we introduced the constant       (   ). From Eq. (60), we express  ̇  and  ̇  through 

the    and   , respectively, and substitute them in the real parts of Eq. (57) and Eq. (58). We obtain 
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Our goal is to consider solution of these equations on the first order small quantities, therefore, we 

omit the      and      terms from the consideration and assume that   
     

  and   
     

 . 

Taking into account the relationship, Eq. (60), we write a set of equations: 
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We try to find the solutions in the form     
    and     

    then Eqs. (62) reduce to 
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where  ̃        ̃         ̃            (   1)  (    
 ) and      (   ) (    

 ). 

Multiplying two equations of Eq. (63) to each other, one obtains 

(  ̃    ̃)(  ̃
    ̃)       ̃

  

and thus the equation 
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The solution of this equation is: 
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   ̃  ̃]  

 

We analyse an effect of the different cases of statistics of particles   and an harmonic potential 

anysotropy    and    on centre-of-mass oscillatory frequency   . Let assume that we consider the 

system of bosons    0 . For this case of particle statistics,             and from equation 

( ̃ )        
     (     )     (     )  
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we have 

  
     

  
      

 

For the case     and isotropic harmonic potential         , we have   
    

   . 

For the system of anyons     and arbitrary harmonic potential    and   , the centre-of-mass 

oscillatory frequences are determined by Eq. (64). 

8. CONCLUSION 

So, after scrutinizing problems and tasks this work and with the help of acquired results the 

following statements can be done to conclude the work: 

 In order to perform the tasks set up in this research a new method for calculating problems has 

been utilized. It is a cumulant method to get the width equation and equation of the motion for 

the centre of mass to get the collective frequencies. This method gave an opportunity to avoid for 

writing an action and take a variation over it and also solve a differential equation of the second 

order which is an overwhelming task. Instead, we solved integrals of Gaussian type which is 

much easier than a variational approach. 

 By utilizing the cumulant method, the expression for the centre-of-mass oscillatory frequencies 

for the system of anyons and arbitrary harmonic potential has been derived in the last chapter. 

Furthemore, special cases for the determined frequency have been considered with the 

parameters   and        .  
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