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Abstract – The paper considers the solute transport in a heterogeneous porous 

medium consisting of well-permeable and poorly permeable zones, taking into 

account nonequilibrium adsorption in the zones. In a well-permeable zone, there are 

two areas, in each of which there is an adsorption of a substance with reversible 

nonequilibrium kinetics. The exchange of solute with the second zone is modeled by 

the source term in the form of a fractional time derivative of the concentration of the 

substance in the first zone. The numerical implementation of the model is carried out 

and the effect of mass transfer to the second zone on the characteristics of the solute 

transport in the first zone is estimated.  

 

Index Terms: adsorption, adsorption kinetics, approximation, fractional 

derivative, porous medium. 
 

 

I. INTRODUCTION 

Underground aquifers and oil and gas strata, as a rule, have a heterogeneous structure at the 

micro and macro scales [1]. Macroscale heterogeneous formations consist of different zones with 

differing, sometimes very strongly, reservoir properties, i.e. porosity, permeability, etc. Areas with 

good porosity and permeability are good conductors for fluids and various substances suspended or 

dissolved in formation fluids. A typical example of heterogeneous formations are fractured-porous 

media (FPM) [2, 3], the structure of which is represented as a system of cracks surrounding porous 

blocks. 

Colloidal particles can move relatively faster and move long distances in structured porous media 

than in media with a homogeneous structure [5,6,7,8]. In such environments, when modeling the 

solute transport, it is usually assumed that the main paths of movement of a fluid and, along with it, 

suspended solids or dissolved substances in it are fractures. Porous blocks in simplified models are 

considered as impermeable for fluid, but particles or solute can diffuse into them. Thus, two zones 

are formed in the medium, one with a mobile fluid (cracks), and the other with a stationary one 

(porous blocks). Mass transfer processes take place between the zones. 

The advance spread of substances in a porous medium can be result of many factors. Therefore, 

there are certain difficulties in mathematical modeling of this phenomenon. Some models in this 

direction were presented in [9,10,11,12]. These models used the two-zone approach noted above. 

Mass transfer between zones is modeled by a first-order kinetic equation [13, 14]. A somewhat 
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different approach, combining kinetic and equilibrium mass transfer between zones, was proposed 

in [15]. Some modification of the two-zone approach is an approach that takes into account the 

movement of fluid in both zones, but with different scales [9, 10]. 

In [20], the process of transfer of colloids was considered under the assumption that reversible 

retention of colloidal particles with different characteristics (parameters) occurs in both zones. 

Relatively speaking, in each zone there are two regions, in one of which the rate of retention of 

particles is higher than in the second, and the rate of release of particles is relatively low than in the 

second. This approach is more realistic than in [4], since irreversible retention of particles is 

observed only at the initial stage of the process, when a monolayer of colloidal particles is formed 

on the surface of the medium rock, i.e. when there is no energy barrier for retention [17,18,19]. 

Thus, the irreversible retention of particles has a time limit, beyond which it becomes reversible. In 

[4], irreversible retention is used for the entire duration of the process, i.e. for the entire time range. 

In this regard, the use of double reversible retention kinetics is preferred. In this case, it becomes 

possible to consider the irreversible kinetics of retention as the limiting case of reversible kinetics. 

In [15], the solute transport in a medium with double porosity is considered, taking into account 

the reversible and irreversible deposition of matter in both zones and the first-order equilibrium 

exchange between the zones. In each zone, i.e. in fractures and porous blocks, there is a reversible 

and irreversible sedimentation (deposition) of a substance with different characteristics, described 

by linear equations. An analytical solution to the problem was obtained, which was used to describe 

the results of earlier experiments [16]. 

In this work, in contrast to [15], a new model is proposed, where the presence of the second zone 

of an inhomogeneous medium is taken into account in the form of a sink (source) term in the 

transport equation written for the first zone. The stock term is presented as a fractional time 

derivative of the concentration of the substance in the first zone with a certain coefficient. This 

model is implemented numerically. The solution is compared with the solution [15] in the first zone. 

It is shown that by appropriate choice of model parameters the solution can be approximated to the 

solution [15].  

 

II. MATHEMATICAL MODEL 

A heterogeneous porous medium is considered, consisting of well-permeable and relatively 

poorly permeable zones, the diagram of which is shown in Fig. 1. The parameters in the first zone 

are indicated by the index 1. There are two sections in zone 1, in each of which the precipitation of 

a substance with reversible nonequilibrium linear kinetics occurs. It is believed that such processes 

also occur in the second zone, but we will not write equations and conditions for it. Substance 

exchange occurs with the second zone, which will be modeled by the fractional time derivative of 

the substance concentration in the first zone [20]. Consequently, in contrast to [15], the 

concentration field in the second zone is not considered. 
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The equations of solute transport in the one-dimensional case are written in the form 

  𝜌
𝜕𝑆𝑎1

𝜕𝑡
+ 𝜌

𝜕𝑆𝑠1

𝜕𝑡
+ 𝜃1

𝜕𝑐1

𝜕𝑡
+ 𝑎2

𝜕𝛾𝑐1

𝜕𝑡
= 𝜃1𝐷1

𝜕2𝑐1

𝜕𝑥2 − 𝜃1𝑣1
𝜕𝑐1

𝜕𝑥
,                            (4) 

 

where 𝑎2 – is the coefficient due to the solute transport into the second medium, 𝑠𝛽−1, 𝛾 −is the 

order of the derivative. 

The sedimentation of matter in each of the sections of the zones occurs reversibly in accordance 

with the kinetic equations 

   𝜌
𝜕𝑆𝑎1

𝜕𝑡
= 𝜃1𝑘𝑎1𝑐1 − 𝜌𝑘𝑎𝑑1𝑆𝑎1,                      (5) 

   𝜌
𝜕𝑆𝑠1

𝜕𝑡
= 𝜃1𝑘𝑠1𝑐1 − 𝜌𝑘𝑠𝑑1𝑆𝑠1,                                 (6) 

where 𝑘𝑎1, 𝑘𝑠1 ‒ coefficients of deposition of matter from the fluid phase to the solid phase, 𝑠−1; 

𝑘𝑎𝑑1, 𝑘𝑠𝑑1 −the coefficients of separation of the substance from the solid phase and the transition 

to the fluid, 𝑠−1. 

Let a fluid with a constant concentration of a substance be pumped into a medium initially 

saturated with a pure (without substance) fluid from the initial moment of time 𝑐0. Let us consider 

such periods of time where the concentration field does not reach the right boundary of the medium 

𝑥 → ∞. Under these assumptions, the initial and boundary conditions for the problem have the form 

𝑐1(0, 𝑥) = 0,  𝑆𝑎1(0, 𝑥) = 0,  𝑆𝑠1(0, 𝑥) = 0,                               (7) 

 

𝑐1(𝑡, 0) = 𝑐0,                           (8) 

 
𝜕𝑐1

𝜕𝑥
(𝑡, ∞) = 0.                        (9) 

 

III. NUMERICAL APPROXIMATION MODEL 

 

Problem (4) – (9) is solved by the finite difference method [21]. In the considered area Ω =

{(𝑡, 𝑥), 0 ≤ 𝑡 ≤ 𝑇, 0 ≤ 𝑥 ≤ ∞} introduced a grid uniform in directions 

 

 
 

 

 

 

 

 

 

 

The second 

zone 

Fig. 1. Scheme of material transfer in a two-zone medium 
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 𝜔𝜏ℎ̅̅ ̅̅ ̅̅ = {

(𝑡𝑗 , 𝑥𝑖); 𝑡𝑗 = 𝜏𝑗, 𝑥𝑖 = 𝑖ℎ,

𝜏 =
𝑇

𝐽
, 𝑖 = 0, 𝐼  ̅̅ ̅̅ ̅̅ , 𝑗 = 0, 𝐽  ̅̅ ̅̅ ̅̅

}, 

 

where 𝐼 −is a sufficiently large integer selected so that segment [0, 𝑥𝐼], 𝑥𝐼 = 𝑖ℎ, overlaps the area of 

the calculated change in fields 𝑐1, 𝑆𝑎1 and  𝑆𝑠1, ℎ −   the grid step in the direction of x,   – is the 

grid step in time t . 

In the open grid area 

 

 𝜔𝜏ℎ = {

(𝑡𝑗 , 𝑥𝑖); 𝑡𝑗 = 𝜏𝑗, 𝑥𝑖 = 𝑖ℎ,

𝜏 =
𝑇

𝐽
, 𝑖 = 1, 𝐼 − 1  ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅, 𝑗 = 1, 𝐽  ̅̅ ̅̅ ̅̅

}
 

equations (4), (5), (6) were approximated as follows 

𝜌
(𝑆𝑎1)𝑖

𝑗+1
− (𝑆𝑎1)𝑖

𝑗

𝜏
+ 𝜌

(𝑆𝑠1)𝑖
𝑗+1

− (𝑆𝑠1)𝑖
𝑗

𝜏
+ 𝜃1

(𝑐1)𝑖
𝑗+1

− (𝑐1)𝑖
𝑗

𝜏

+
𝑎2𝜏1−𝛾

Г(2 − 𝛾)
[∑

(𝑐1)𝑖
𝑘+1 − (𝑐1)𝑖

𝑘

𝜏
((𝑗 − 𝑘 + 1)1−𝛾 − (𝑗 − 𝑘)1−𝛾)

𝑗−1

𝑘=0

+
((𝑐1)𝑖

𝑗+1
− (𝑐1)𝑖

𝑗
)𝜏1−𝛾

𝜏
]

= 𝜃1𝐷1

(𝑐1)𝑖−1
𝑗+1

− 2(𝑐1)𝑖
𝑗+1

+ (𝑐1)𝑖+1
𝑗+1

ℎ2
− 𝜃1𝑣1

(𝑐1)𝑖
𝑗+1

− (𝑐1)𝑖−1
𝑗+1

ℎ
              (10)

 
 

𝜌
(𝑆𝑎1)𝑖

𝑗+1
−(𝑆𝑎1)𝑖

𝑗

𝜏
= 𝜃1𝑘𝑎1(𝑐1)𝑖

𝑗
− 𝜌𝑘𝑎𝑑1(𝑆𝑎1)𝑖

𝑗+1
,            (11) 

𝜌
(𝑆𝑠1)𝑖

𝑗+1
−(𝑆𝑠1)𝑖

𝑗

𝜏
= 𝜃1𝑘𝑠1(𝑐1)𝑖

𝑗
− 𝜌𝑘𝑠𝑑1(𝑆𝑠1)𝑖

𝑗+1
,               (12) 

where (𝑐1)𝑖
𝑗
, (𝑆𝑎1)𝑖

𝑗
, (𝑆𝑠1)𝑖

𝑗
− grid function values  𝑐1(1, 𝑥),  𝑆𝑎1(𝑡, 𝑥),  𝑆𝑠1(𝑡, 𝑥),   at the 

point (𝑡𝑗 , 𝑥𝑖). 

From explicit grid equations (11), (12) we determine (𝑆𝑎1)𝑖
𝑗+1

, (𝑆𝑠1)𝑖
𝑗+1

 
 

(𝑆𝑎1)𝑖
𝑗+1

= 𝑝𝑏1(𝑆𝑎1)𝑖
𝑗

+ 𝑝𝑏2,                        (13) 

 

(𝑆𝑠1)𝑖
𝑗+1

= 𝑞𝑏1(𝑆𝑠1)𝑖
𝑗

+ 𝑞𝑏2,                             (14) 

Where 

 

𝑝𝑏1 =
1

1 + 𝜏𝑘𝑎𝑑1
,    𝑝𝑏2 =

𝜏𝜃1𝑘𝑎1

𝜌 + 𝜌𝜏𝑘𝑎𝑑1
(𝑐1)𝑖

𝑗
, 
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𝑞𝑏1 =
1

1 + 𝜏𝑘𝑠𝑑1
, 𝑞𝑏2 =

𝜏𝜃1𝑘𝑠1

𝜌 + 𝜌𝜏𝑘𝑠𝑑1
(𝑐1)𝑖

𝑗
. 

Grid equations (10) are reduced to the form 

𝐴1(𝑐1)𝑖−1
𝑗+1

− 𝐵1(𝑐1)𝑖
𝑗+1

+ 𝐸1(𝑐1)𝑖+1
𝑗+1

= −(𝐹1)𝑖
𝑗
,              (15) 

 

where  

𝐴1 =
𝜃1𝐷1𝜏

ℎ2
+

𝜃1𝑣1𝜏

ℎ
,  

 

     𝐵1 = 𝜃1 +
2𝜃1𝐷1𝜏

ℎ2 +
𝜃1𝑣1𝜏

ℎ
+

𝑎2𝜏1 −𝛾

Г(2−𝛾)
, 

 

   𝐸1 =
𝜃1𝐷1𝜏

ℎ2 , 

 

(𝐹1)𝑖
𝑗

= (𝜃1 +
𝑎2𝜏1 −𝛾

Г(2 − 𝛾)
) 𝐵1(𝑐1)𝑖

𝑗
− 𝜌((𝑆𝑎1)𝑖

𝑗+1
− (𝑆𝑎1)𝑖

𝑗
) − 𝜌((𝑆𝑠1)𝑖

𝑗+1
− (𝑆𝑠1)𝑖

𝑗
)

−
𝑎2𝜏1−𝛾

Г(2 − 𝛾)
[∑((𝑗 − 𝑘 + 1)1−𝛾 − (𝑗 − 𝑘)1−𝛾)(𝑐1)𝑖

𝑘+1

𝑗−1

𝑘=0

− ((𝑗 − 𝑘 + 1)1−𝛾 − (𝑗 − 𝑘)1−𝛾)(𝑐1)𝑖
𝑘]. 

 

The following procedure for calculating the solution is established. By (13), (14) (𝑆𝑎1)𝑖
𝑗+1

, 

(𝑆𝑠1)𝑖
𝑗+1

, are determined, then the system of linear equations (15) is solved by the Thomas’ 

algorithm with respect to (𝑐1)𝑖
𝑗+1

. Since 𝑝𝑏1, 𝑞𝑏1 < 1, schemes (13), (14) are stable, and for (15) 

the stability conditions of the Thomas’ algorithm are satisfied. 

 

IV. NUMERICAL RESULTS AND THEIR ANALYSIS 

 

Numerical experiments were carried out according to the above algorithm.  

The calculations used the following values of the initial parameters: 

𝑐0 = 0.1,  𝑣1 = 10−4 𝑚

𝑠
,   𝐷1 = 𝑣1 ∙ 𝛼,   𝛼 = 0.005 𝑚,   𝜃1 = 0.1,   𝛼2 = 6 ∙ 10−4, 𝑘𝑎1 = 3 ∙

10−4 𝑠−1, 𝑘𝑎𝑑1 = 2.5 ∙ 10−4 𝑠−1, 𝑘𝑠1 = 4 ∙ 10−4 𝑠−1, 𝑘𝑠𝑑1 = 2 ∙ 10−4 𝑠−1, 𝜌 = 1800 𝑘𝑔/𝑚3
  
 

and various 𝛾. 

Some typical results are shown in Fig. 2. As seen from Fig. 2, the outflow of the substance into 

the second zone leads to a delayed propagation of the concentration profiles of the substance in the 

mobile fluid. As a consequence of this phenomenon, delays are also observed in the concentrations 

of the adsorbed substance. 
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Fig. 2. Concentration profiles 1c  (a), 1aS (b), 1sS (c) at   

,3600 сt   
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5. CONCLUSION 

 

In this work, in contrast to [15] a new model is proposed, where the presence of the second zone 

of an inhomogeneous two–zone medium is taken into account in the form of a sink (source) term in 

the transport equation written for the first zone. The stock term is presented as a fractional time 

derivative of the concentration of the substance in the first zone with a certain coefficient. Thus, this 

approach is mono-continuous, while in [15] the bicontinuous approach was used. 

The transport model is analyzed numerically. It is shown that with a decrease in the index from 

unity with the remaining parameters unchanged, the precipitation of matter intensifies. As a result, 

a lag occurs in the development of the distribution of the concentration of a substance in a mobile 

fluid. 
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