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Abstract: The article deals with the problem of stationary blood flow in vessels with 

permeable walls. To determine the hydraulic resistance in an arterial vessel, the blood is 

considered to be a Newtonian viscous fluid, and the flow is stationary. In solving problems, 

formulas are obtained for determining the corresponding hydrodynamic parameters, such as 

velocity, fluid flow, and pressure gradient. Impedance method determined the hydraulic 

resistance. With a steady flow, the hydraulic resistance in the permeable vessel depends 

significantly on the permeability coefficient: with increasing this coefficient, it decreases. 
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 Introduction 

 

During the contraction of the heart from the heart along the walls of the blood vessels, a 

wave of pressure propagates, which is called a pulse wave. As the wave moves away from the 

heart, this wave gradually weakens and practically fades in the capillaries. The speed of the pulse 

wave propagation depends on many factors, among which, for example, the elastic-viscous 

properties of the vessel wall, blood pressure, its density, viscosity, permeability of the vessel wall, 

etc. can be noted. In most works,1-6 the main attention is paid to determining the propagation of a 

pulse pressure wave taking into account the elasticity of the vessel wall, and its permeability is not 

taken into account anywhere. However, the permeability of the wall significantly affects the 

propagation of the pulse pressure wave and its damping. The branching of the arterial tree is 

modelled by introducing a “permeability” of the wall with volume outflows of transverse velocity 

to the walls. In fact, this velocity is a strongly discontinuous function of the coordinate, when 

using the model of a permeable tube this function is always smoothed by the wall surface. 

Apparently, the idea of modelling an artery in the form of a permeable tube was first expressed in7 

and is developed further in.8 The most complete study of such a model is contained in,9 where the 

system of blood circulation of a dog is modelled. Unlike other works,2-6 to determine the 

hydraulic resistance in the central arterial vessel, the formulation of the problem of pulsating 

blood flow in the arterial channel was considered in,10,11 where the outflow of blood is 

mathematically modelled as a permeable wall of blood vessels. It should be noted that in addition 
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to wave flows, it is advisable to study the steady flow of blood in a vessel with permeable walls. 

However, this case does not follow from the solution for wave fluxes as the limit as the frequency 

tends to zero, so the stationary problem should be considered in a separate formulation. 
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Taking them into account, we obtain from [1-5] a system of equations 
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Where  -density of blood; r - radial; x - longitudinal coordinate; 
r

  and 
x

 - radial and 

axial velocity components;  - cinematic viscosity of blood; p  - internal pressure; 
0

p  -pressure 

in the environment; 
0

Q  - average pressure values and flow rate; 
* - coefficient of permeability. 

From the system (1), after making some calculations, we find the equation for the pressure 
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According to which in a stationary flow the pressure distribution obeys the Laplace 

equation. We seek the solution of (3) in the form 
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This procedure follows from the general solution of3 under the condition that. In this case, 

the complex argument is transformed to the real one, i.e. 
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Here all functions are real. Therefore, in the stationary problem, there is no need for a 

complex solution. 

The substitution of (5) into (3) leads to the Bessley equation 
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His fundamental decisions will be: 
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In this case the general solution has the form 
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At, the pressure becomes infinite, so the coefficients in front of the function 
0

Y r
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 must 

vanish and in this case the solution of (6) takes the form 
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Or finally, we get a solution 
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Where the coefficients 
1

c  and 
2

c  are determined from the boundary conditions (2). The 

calculation of (8) for the first equation of system (1) gives the equation 
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whose solution is sought in the form 
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Then 
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Equation (11) is solved under the condition that the liquid adheres to the wall of the tube, 

i.e. 
x

  at r R  and limitations 
x

    on the axis of the pipe  

The fundamental solutions (11) of the Bessel function of zero order are expressed in this 

way 
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Equation (11) is inhomogeneous, and therefore its particular solution is found from formula 
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The use of the fundamental solution (12) and the limited velocity on the axis of the tube 

gives 
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From condition 0
x

   at r R  , define 
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In the same way, using the solution (18) and the second equation of the system (1), we 

obtain a formula for the distribution of the transverse velocity: 
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Using the wall permeability condition (2) leads to an equation for determining the 

eigenvalue λ 
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If 
*J I  then, expanding the functions    0 1

,J J   in convergent series 
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From (20), after some calculations, we find 

*4           (22) 

Equation (20) is transcendental and has an infinite set of roots 
n

  Summation over 

eigenvalues 
n

  gives formulas for pressure, radial and axial velocities 
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Formulas (23) allow us to investigate the characteristics of the internal structure of the flow 

of viscous blood in a pipe with permeable walls: hydrodynamic resistance on a permeable wall, 

fluid flow along the length of the tube, and a number of other hydrodynamic parameters. Using 

(23), we find the distribution of pressure drop, blood flow and shear stress on the wall: 

0
1

n nx x
R Rn n n

n n
n

p
J r A B

x R R R

 
  

       
   



   
     
   

    (25) 

   
 
 

 
 

3

1 1

02
10 0 0

1
2 , 1 *

*
n n

R

n n n

x n
n

n n

x x
R R

n n

J JR
Q r r x dr J X

J J

B A

 

  
   

   





   
   
   

     
      

    

 
  

 


 (26) 



MIDDLE EUROPEAN SCIENTIFIC BULLETIN ISSN 2694-9970            156 

Middle European Scientific Bulletin, VOLUME 21 Feb 2022 

 

 

 
 
 

0

* 1

0
1

0

1
,

2 ( )
n n

L

x r

cp

L L
n R R

n n n n n n
n

n n

dr
L r x

JR
dx J A B A B

L J

 

 
 


  

 

       
   



  
  

  

    
       

    





 (27) 

Using formulas (25) and (26), we determine the ratio of the pressure drop per unit length to 

the blood flow: 
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Or, in a dimensionless form, 
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Attitude 
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 is called the effective impedance, in the general case it is expressed by a 

function of a complex variable. Therefore, its real part determines the hydraulic resistance of the 

flow. It can be seen from Figure 1 that the effective impedance at a stationary flow in a permeable 

pipe essentially depends on the permeability coefficient: with an increase in this coefficient, it 

decreases. It can be seen from Figure 1 that in the arterial vessel the hydraulic resistance decreases 

due to the permeability of the wall, when it is 0.015, corresponds to a decrease by 9-10 percent. 
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Figure 1 Change in the total resistance of blood in the arterial bed, depending on the 

permeability of the wall 
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